

SIGRETIOS Ton
TESTWRRE 111STRUMEAT

OPERATOR" GUIDE

mantes
a subsidiary of U.S. Philips Corporation

Stgnetics Corporation
811East Arques Avenue

Sunnyvale,Calitania 94086
Telephone 408/739-7700

DOCUMENT NO. IW09003000

PRICE - $5.00

COPYRIGHT 1976, SIGNETICS CORP. ALL RIGHTS RESERVED.

SIGNETICS CORP. CLAIMS TRADEMARK RIGHTS TO THE NAMES IWIN AND TWICE

TABLE OF CONTENTS

CHAPTER 	 TITLE 	 PAGE

1 	INTRODUCTION 	 1-1

1.0 	INTRODUCTION 	 1-1

1.1 	TWIN OVERVIEW 	 1-1
1.2 	ABOUT THIS BOOK 	 1-5
1.3 	MANUAL CONTENTS 	 1-6

2 	SYSTEM DESCRIPTION 	 2-1

2.0 INTRODUCTION 	 2-1

2.1 	HARDWARE 	 2-1
2.1.1 TWIN DEVELOPMENT COMPUTER 	2-1
2.1.2 DUAL FLOPPY DISK SUBSYSTEM 	2-3

2.2 PERIPHERALS 	 2-4
2.2.1 CRT TERMINAL 	 2-4
2.2.2 ASR-33 TELETYPEWRITER 	2-4
2.2.3 LINE PRINTER 	 2-6
2.2.4 USER-SUPPLIED PERIPHERALS 	2-6

2.3 SOFTWARE 	 2-6
2.3.1 SDOS 	 2-6

2.3.1.1 THE DEBUG MONITOR 	2-7
2.3.1.2 PROM PROGRAMMING 	2-7

2.3.2 THE EDITOR 	 2-7
2.3.3 THE ASSEMBLER 	 2-7
2.3.4 SYSTEMS READINESS TEST 	2-8

3 	SYSTEM OPERATION 	 3-1

3.0 INTRODUCTION 	 3-1

3.1 	UNPACKING 	 3-1
3.1.1 UNPACKING THE TWIN DEVELOPMENT COMPUTER 	3-1
3.1.2 UNPACKING THE CRT TERMINAL 	3-1
3.1.3 UNPACKING THE FLOPPY DISK UNIT 	3-4
3.1.4 UNPACKING THE LINE PRINTER 	3-4
3.1.5 INSTALLING THE TWICE DEBUG CABLE 	3-4

3.2 	INTERCONNECTION AND PHYSICAL INSTALLATION 	3-4

CHAPTER 	 TITLE 	 PAGE

3.2.1 POWER REQUIREMENTS 	 3-5
3.2.2 INTERCONNECTION 	 3-5

3.3 	SYSTEM CONTROLS AND INDICATORS 	3-6
3.3.1 DEVELOPMENT COMPUTER 	3-6
3.3.2 DUAL FLOPPY DISK UNIT 	3-8
3.3.3 CRT TERMINAL 	 3-8
3.3.4 PRINTER 	 3-8

3.4 	OPERATION 	 3-10
3.4.1 MANUAL RESET 	 3-12

4 	SIGNETICS DISK OPERATING SYSTEM 	 4-1

4.0 	INTRODUCTION 	 4-1

4.1 	ENTERING SDOS COMMANDS 	 4-2
4.2 	SPECIAL KEYS 	 4-3
4.3 	FILES, DEVICES, AND CHANNELS 	4-4
4.4 	THE SDOS COMMANDS 	 4-7

4.4.1 THE SDOS COMMAND DESCRIPTIONS 	4-7
4.4.1.1 SDOS COMMAND COMPLETION 	4-9

4.4.2 SYSTEM CONTROL COMMANDS 	4-9
4.4.3 SYSTEM OPTIONS 	 4-14
4.4.4 SYSTEM UTILITIES 	 4-16
4.4.5 OBJECT PROGRAM UTILITIES 	4-24

4.5 	RESIDENT SDOS AND OVERLAY AREAS 	4-27
4.5.1 	RESIDENT SDOS 	 4-27
4.5.2 SDOS OVERLAYS 	 4-27

4.6 	COMMAND FILES 	 4-28
4.6.1 COMMAND FILES UTILITIES 	4-30

5 	THE TEXT EDITOR 	 5-1

5.0 	INTRODUCTION 	 5-1

5.1 	THE EDIT COMMAND 	 5-2
5.2 	EDIT EXAMPLE 	 5-3
5.3 	EDITOR COMMAND DESCRIPTIONS 	5-12

5.3.1 EDITOR COMMAND LINE 	5-12
5.3.2 EDITOR COMMAND DESCRIPTION CONVENTIONS 	5-14
5.3.3 INSERTION 	 5-16
5.3.4 DELETION 	 5-18
5.3.5 ALTERATION 	 5-19
5.3.6 SEARCH 	 5-21
5.3.7 I/O 	 5-22

ii

CHAPTER 	 TITLE 	 PAGE

5.3.8 LINE POINTER COMMANDS 	5-25
5.3.9 UTILITIES 	 5-25
5.3.10 MACROS 	 5-31

5.4 	EDITOR MESSAGES 	 5-31

6 	THE ASSEMBLER 	 6-1

6.0 INTRODUCTION 	 6-1

6.1 	PRE-ASSEMBLY TASKS 	 6-1
6.2 	THE ASM COMMAND 	 6-2
6.3 	POST-ASSEMBLY TASKS 	 6-2
6.4 	ASSEMBLER ERRORS 	 6-5
6.5 	LOADING AN ASSEMBLED PROGRAM 	6-6
6.6 	THE ASSEMBLER TAB FEATURE 	 6-7

7 	THE PROM PROGRAMMER 	 7-1

7.0 INTRODUCTION 	 7-1

7.1 	USING THE PROM PROGRAMMERS 	 7-1

8 	THE DEBUGGER 	 8-1

8.0 INTRODUCTION 	 8-1

8.1 	THE DEBUG PACKAGE 	 8-2
8.2 	THE DEBUG COMMANDS 	 8-4
8.3 	SAMPLE DEBUG SESSION 	 8-4
8.4 	DEBUG COMMANDS 	 8-13
8.5 	TWICE DEBUG CABLE 	 8-26

APPENDIX

A 	SDOS COMMAND SUMMARY 	 A-1

B TEXT EDITOR COMMAND SUMMARY 	 B-1

C 	ABSOLUTE OBJECT FORMAT 	 C-1

D SMS TAPE FORMAT 	 D-1

E SYSTEM READINESS TEST 	 E-1

F 	SYSTEM UTILITY COMMAND FILES 	 F-1

iii

FIGURE 	 TITLE 	PAGE

1-1 	ELEMENTARY PARTITIONING OF 2650
MICROCOMPUTER SYSTEM LOGIC 	 1-3

1-2 	TWIN SLAVE CPU EMULATES USERS SYSTEM CPU 	1-4

2-la A DISKETTE 	 2-5
2-1b A DISKETTE 	 2-5

3-1 	DEVELOPMENT COMPUTER PC BOARD LAYOUT 	3-2
3-2 	DEVELOPMENT COMPUTER (TOP VIEW) 	 3-3
3-3 	COMPUTER FRONT PANEL 	 3-7
3-4 	COMPUTER REAR PANEL 	 3-9
3-5 	INSERTING A DISKETTE 	 3-11

5-1 	A SAMPLE SOURCE PROGRAM 	 5-3
5-2 	ENTERING TEXT AND DISPLAYING THE BUFFER 	5-5
5-3 	FIND< SUBSTITUTE AND REPLACE COMMANDS 	5-6
5-4 	DISPLAYING THE BUFFER AND FILING 	 5-7
5-5 	DOUBLE PRECISION ADD AND SUBSTRACT 	 5-8
5-6 	ADDING DATA TO AN EXISTING FILE 	 5-10
5-7 	INSERTING LINES INTO THE BUFFER 	 5-13

6-1 	SAMPLE PROGRAM 	 6-3
6-2 	SAMPLE ASSEMBLY LISTING 	 6-4

8-1 	SAMPLE PROGRAM 	 8-5
8-2 	LOADING OBJECT CODE AND DEBUGGER

INITIALIZING SLAVE REGISTERS 	 8-6
8-3 	SINGLE STEP TRACE ALL MODE 	 8-8
8-4 	TRACE ALL MODE 	 8-11
8-5 	USING BREAKPOINTS 	 8-10
8-6 	USING THE TRACE ALL JUMPS MODE 	 8-12
8-7 	CLEARING BREAKPOINTS 	 8-14
8-8 	TERMINATING A DEBUG SESSION 	 8-14

TABLE 	 TITLE

4-1 	DEVICE NAMES 	 4-5
4-2 	SDOS ERROR MESSAGES 	 4-33
4-3 	SDOS SYSTEM PROGRAM IDENTIFIERS 	 4-35

8-1 	DEBUG COMMANDS 	 8-3
8-2 	TRACE TABLE MNEMONICS 	 8-24

iv

CHAPTER 1

THE TWIN SYSTEM

	

1.0 	INTRODUCTION

When designing any product that includes a microprocessor, there are aspects
of the development cycle which have no parallel either in combinatorial logic
design or in computer program development - the two predecessors of micropro-
cessor product development.

There is no clear -cut demarcation between logic which should be implemented
using digital logic packages or logic which should be implemented using
programmed instructions; that is what makes microprocessor product development
unique. A successful microprocessor development system, such as TWIN, must
therefore support digital logic development and object program creation
with equal Perse. Iherein lies the strength of the TWIN system.

	

1.1 	TWIN OVERVIEW

TWIN may at first look like any other general purpose minicomputer system;
there is a CRT and keyboard which communicates with a box that resembles a
minicomputer. Results may be created on a line printer and intermediate data
or programs may be stored on diskettes.

Indeed, TWIN offers many of the program creation and execution facilities that
any general purpose minicomputer system will offer. Source programs, written
in assembly language, may be entered via the CRT terminal and stored on
diskette. Subsequently, source programs may be retrieved from diskette,
edited and stored back. An Assembler converts source programs into executable
object code and a Debugger allows the object code to be conditionally
executed as a means of detecting conceptual errors -- that is, instruction
sequences which, though they are syntactically correct, do not accurately
represent the intended logic or data flows.

The entire process of program creation and correction makes heavy use of the
bulk data storage capability of diskettes. Therefore, a disk operating system
is provided to automate the process of accessing diskette files by identifying
file labels rather than diskette track and sector addresses.

All of the TWIN program creation and execution features are comparable to
any general purpose minicomputer system. So complete is this parallel, that
there would be nothing preventing TWIN from being used like any other mini-com-
puter system -- as a text editor or even a business machine. User-written

1-1

programs may access diskettes via the disk operating system; indeed the disk
operating system could be included as a utility within a large user-written
program.

But TWIN is much more than a general purpose minicomputer system. The
typical 2650 user program created on TWIN is subsequently going to become an
object program, implemented in PROM or ROM. A microprocessor object program
is therefore ultimately to become a package, driving 2650-based logic, in a
configuration that may not even remotely resemble a computer. The only
constant that may be ascribed to 2650 based products is that they will contain
a Signetics 2650 microprocessor, drives by one or more object program
packages; additional logic must be present to handle the flow of data or
signals to or from the microprocessor. Figure 1-1 therefore generally
identifies the ultimate configuration which any microprocessor-based product
will have.

Every part of the end product illustrated in Figure 1-1 may be developed using
TWIN.

The process of creating an executable object program was described first,
since this is the most obvious capability of a configuration that looks like a
general purpose minicomputer system. But the similarities between TWIN and a
general purpose minicomputer system end at this superficial level.

Consider some of the additional features which TWIN provides to serve as a
total microprocessor based product developnent aid.

To begin with; object programs are likely to be stored in PRCM or ROM devices.
'TWIN allows you to create the PRCM, or to define the ROM mask.

The TWIN provides two CPUs. A master CPU performs monitoring and disk
operating system functions; functions required by TWIN, but absent in the
product being developed. A slave microprocessor takes the place of the 2650
device which must be present in the end product.

Memory is also provided in duplicate. The master CPU has its own memory, out
of which it can execute monitoring and disk operating system programs. The
slave CPU has separate memory which remains available for user applinAtion
programs. This is illustrated in Figure 1-2. When appropriate, TWIN allows
the master CPU to access slave processor memory. The separation of programs
between master and slave memories is not exactly a "system" versus "user"
division, but that is of little concern to the TWIN user.

OBJECT PROGRAMS

IN ROM OR PROM

SYSTEM 	BUS

1

INTERFACE LOGIC FOR
SIGNALS AND DATA EXCHANGE

TO OUTSIDE WORLD

FIGURE 1-1

ELEMENTARY PARTITIONING OF 2650

MICROCOMPUTER SYSTEM LOGIC

1-3

2650

CPU

TWIN SYSTEM
	

USER SYSTEM 	QC DIRECT SIMULATION

/ / 0/1 r 	r
MASTER 	MASTER
2650 	

'11111

107/51/M, I ' lij // A \ k\
/ 	OBJECT PROGRAMS

IN ROM OR PROM / 	MEMORY

TWIN BUS 	 'N§

/ 	04 7/ 	
\

,
SYSTEM BUS

• 1.
• • 4, 	.
> SLAVE

1 	..
2, 2650

> 	
SLAVE 4i

MEMORY
4

4• 	4 	INTERFACE LOGIC 4>

	

0 9_•• 	
4i .4

	

1' • • 	
i FOR SIGNALS AND DATA EXCHANGE'

olk11 ••••... Ab . 	** a * .9 . \ 	TO OUTSIDE WORLD

-- •<-; 	... 	4, v. - 	• • 4

	

••1•4" " " '4L• '," '•` •• '1P • 	\ k • •m• •• 	•••• • .44. .4. . , „ .4.4... 4.4.4.4,4.4,.• ir.„............ Ir ... '11/".11/ Ir lowir II V' IP' '," 	•••••••

• •V 	
" " 	

• • .• 4.•.. ...- 	a " " . " "..."<‘

	

4: orl. vr.... .. lir -.... .. e, , ir ir 	• \

&_..." 	."

.v." .4 W4 ›‘..v.r.v. . .1 VI .. . ' . . • . 1 I - >

FIGURE 1-2

TWIN SLAVE CPU

EMULATES USERS SYSTEM CPU

TWIN's simulation of I/O logic renairs to be described. The problem with this
additional logic is that it is completely undefinable. Not only is it
impossible to say how far such logic migrates into an end product, it is
equally hard to determine, in advance, those functions which will end up as
program steps in PROM or ROM as opposed to digital logic packages. TWIN
resolves the open-endedness of this additional logic by providing the TWICE
cable; any external logic may communicate with the slave microprocessor and
its slave memory via the TWICE cable. Moreover, external logic beyond the
TWICE cable may, itself, contain program memory. Referring to Figure 1-2, the
logic shaded "user system" communicates with the TWIN system via the TWICE
cable.

Thus, TWIN becomes a total microprocessor -based product development system.
Every aspect of a 2650 -based product may be simulated and designed using TWIN.
By the time product developnent is complete, the TWIN user may be certain that
no surprises rennin. PRCMs or RCMs contain object programs which, while being
created, were executed by a microprocessor which is identical to the end
product microprocessor. While object programs were executed by TWIN, during
their creation, they interacted via the TWICE cable with additional logic
which, package-for-package, will be identical to the eventual end product.
Therefore, when going from TWIN emulation to end product, the only changes
will be in physiral fabrication.

1.2 	MOUT THIS BOOK

This bock is a TWIN Operator's Guide. As such, it describes all aspects of TWIN
system operation, from unpacking, through switches and indicators, to the use of
the various system development programs.

Additionally, there is a TWIN System Reference Manual, document number
N090014000, which provides a detailed hardware description of the TWIN system
and its various components.

A Maintenance Manual, document number N09006000, helps the user locate and fix
malfunctions in the TWIN system, and provides detailed logic diagrams.

The 2650 TWIN Assembly Language Manual, document number TW09005000, describes
the 2650 assembly language and the way it should be used to create assembly
language source programs.

The Signetics 2650 Microprocessor Manual, document number 2650BM1000,
describes the hardware and interfacing aspects of the 2650 and provides
detailed explanations of its instruction set.

1.3 	MANUAL CONTENT

Chapter 2 of this manual describes system hardware in general terms, and gives
an overview of system software. Chapter 3 describes unpacking, installation
and initial operation. Chapter 4 gives details of the Signetics disk operating
system and describes procedures for using it. Chapter 5 describes the Text
Editor and gives procedures for using the Editor to create and modify files.
Chapter 6 describes the Assembler and how it is used to create object programs
from assembly language programs. Chapter 7 gives procedures for prognaming
type 1702A and type 82S115 PROMs from assembled user programs. Chapter 8
describes the capabilities of the TWIN debug system.

1-6

CHAPTER 2

SYSTEM DESCRIPTION

2.0 	INTRODUCTION

This chapter outlines system configuration, peripherals, and software
provided with the system.

2.1 	HARDWARE

The TWIN is a complete microprocessor development system based on the
Signetics 2650. This system is used to create and edit assembly language
source programs, to assemble source programs into object code, and to execute
object programs. User's object programs may be executed out of TWIN memory,
or by using the TWICE interconnecting cable assembly, object programs may be
executed out of external memory that is part of an end product. Thus TWIN can
simulate an end product, or interface directly to it; therefore TWIN has the
ability to support every phase of product developrnent. A TWIN system consists
of a development computer with 16K bytes of master memory and 16K bytes of
slave memory, and a dual drive floppy disk unit; peripherals include a CRT
terminal and a line printer. Options available include additional floppy disk
units, additional memory, PROM programmers, and general purpose I/O cards.
The computer, disk unit, terminal, and line printer are all desk-top units and
are self-contained.

2.1.1 	TWIN DEVELOPMENT COMPUTER

The development computer consists of a mainframe enclosure and printed circuit
board subsystems to implement development functions. The following describes
major functions of the development computer hardware.

MASTER AND SLAVE CPU

The TWIN operating system runs in a master CPU which is the Signetics 2650.
The Editor, Assembler and user programs run in the slave CPU.

At any point in time, only one CPU within the TWIN system can be active and exe-
cuting instructions. The master CPU is responsible for determining which CPU is
active. The master CPU determines the slave CPU state via a series of control
lines, which become master CPU interrupts.

2-1

PARTITIONED I/O

The master CPU handles all I/O communication with system peripherals.
Programs executed by the slave CPU communicate with system peripherals via
the master CPU by issuing requests to the master CPU for their system I/O.
This is done through supervisor calls (SVCs) from the slave to the master. SVCs
are discussed in the Svstem Reference Manual.

There is separate interface logic available only to the slave CPU. Using this
logic, the user can add interface boards for development-oriented peripherals,
allowing the slave CPU to communicate with its own peripheral units directly.
Thus, programs under development can be executed in a hardware environment
nearly identieal to that of the user's final product.

DUAL MEMORIES

The system includes two separate memories: one is the slave memory of up to 64K
bytes.* This memory is accessible by both master and slave CPUs. Two system
programs, the Editor and the Assembler, plus a small Debug trace package, are
executed out of the slave memory by the slave CPU. User development programs
are also run under the slave CPU in this memory.

The other memory is the master memory in which the operating system and the
debug monitor run under the master CPU. This memory is protected completely
from the slave CPU and its application programs. The protected portion has an
address range from 0000 through 16383. The master CPU also has the ability to
map any 16K section of the slave memory into an additional address space
available only to the master. This allows the master CPU access to user buf-
fers and pointers and is needed by the debug trace program.

Having separate master and slave memories insures that the operating system
need not interfere with user programs. This also protects the integrity of the
operating system; the operating system in the master memory cannot be
inadvertently effected by development programs.

PROM PROGRAMMING

The development computer contains two optional PROM programming boards and
three front-panel PROM sockets. The two programming boards are used for the
82S115 bipolar PROM and the 1702A MOS PROM. Programming of the PROM s is
accomplished under program control, after the user has a completely assembled

*Although the 2650 slave can address only 32K of memory, a 64K memory capability
is provided to allow use of the TWIN with other slave CPUs.

2-2

and debugged program. A front-panel switch turns off FROM programmer power so
that devices cannot be damaged during insertion and removal.

DEBUGHARLWARE

The Debug circuitry is the interrupt -driven interface beten the master CPU
and the active slave CPU. The master 011MJcan force an interrupt, a reset, or
a branch. The slave can also be run in single-step mode. There are two
hardware corrparator registers available for address breakpoints. The debug
interrupt logic is used to handle a11 I/O service requests from the slave CPU.

TWICE HARDWARE

The TWICE hardware consists of a cable and driver/receiver circuits that allow
in-circuit emulation of user programs in user developed hardware. The user's
2650 microprocessor is removed and replaced by a cable plugged directly into
the 2650 socket. The other end of the cable is attached to the TWIN slave CPU
circuit board, which contains the multiplexing and other logic to support the
TWICE modes. The slave CPU thus becomes the CPU for the user system.

There are three modes of operation:

1) The slave CPU runs the program residing in slave memory using the I/O
circuits contained in the TWIN system. This is the normal non-TWICE
mode.

2) The slave CPU runs the program resident in slave memory, but all I/O
signals and data are derived from external user developed hardware.

3) The slave CPU runs user programs resident in external user development
memory. All I/O signals and data are derived from the user developed
hardware.

2.1.2 	DUAL FLOPPY DISK SUBSYSTEM

The floppy disk subsystem is the mass -storage medium for the system. The
subsystem consists of two disk drives, a microprocessor controller, power
supplies, and cabinet. The disk subsystem communicates directly with the
development computer through an interconnecting cable.

CONTROLLER

The floppy disk controller utilizes a 128-byte sector buffer to allow

asynchronous data transfer. Other important features include sector inter-
leaving, automatie data blocking, automatie system boot on power -up, automatie
retry on read or write failures, and the ability to expand to an eight drive
system.

DISKETTE

The organization of data on a diskette is pictured in Figures 2-la and 2 -1b.
On each diskette, there are 77 concentric circles (Figure 2-1a), which can
contain data. Each circle is referred to as a track. In Figure 2 -1b, a track
is divided into its component Aarts. Each quarter track is referred to as a
block. Each block is split into eight sectors. A sector is the basic unit
of disk data. Each sector can contain 128 eight-bit bytes. Due to directory
limitations, a maximum of 78 files can be contained on one diskette. The disc
operating system reserves track 0 for the disc directory, and tracks one
through four are normally automatically reserved for a portion of SDOS.

In order for the disk drive to be able to read or write a diskette, the
diskette must have certain information on it. The process of plating this
information on the diskette is called formatting. If diskettes are purchased
from Signetics, they are pre-formatted. If diskettes are not purchased from
Signetics, they MUST be fonratted before use. (Section 4.4.4).

2.2 	PERIPHERALS

Peripherals compatible with the system include a CRT terminal with a full
ASCII keyboard, a line printer, an ASR -33 Teletypewriter, and a paper tape
reader. In addition, the GPI/0 card supports any RS-232-C compatible device
and contains four 8-bit parallel I/O ports which allow the user to interface
TTL compatible peripherals to the TWIN.

2.2.1 	CRT TERMINAL

The CRT terminal is the primary I/O device for the operator. The terminal
consists of a CRT display and an operator keyboard. The keyboard is a
standard typewriter-style unit with additional mode keys. The CRT and
keyboard can be separated for operator convience.

2.2.2 	ASR-33 TELETYPEWRITER

A standard ASR-33 with a 20 mA current loop or RS-232-C interface can be used as
an alternate console I/O device. In addition, the TTY can be used to provide
hard copy and to punch paper tapes for file storage offline.

2-4

Block

A DISKETTE

77 tracks

FIGURE 2-2a

FIGURE 2 -2b

2-5

2.2.3 	LINE PRINTER

A Centronics 306C line printer is available for hard copy output. The
standard line printer is connected through a cable to the floppy disk
subsystem, and is capable of printing 100 characters per second with an 80
character column width, or 165 characters per second with a 132 character
column width.

2.2.4 	USER-SUPPL1ED PERIPHERALS

Any RS-232 -C compatible peripheral can be connected to the serial I/O port of
the GPI/0 card, or any 8-bit parallel device to one of the four parallel
ports on the GPI/0 card. If these peripherals are to interface to the operating
system, the addition of a software driver to control the device is required.
This driver is added to the TWIN software using the method described in the
TWIN System Reference Manual.

2.3 	SOFIWARE

The TWIN development system software consists of SDOS, the Signetics Disk
Operating System, and its associated comnands. Three SDOS commands invoke the
Editor, the Assembler, and the System Readiness Test.

2.3.1 	SDOS

SDOS provides the user with a variety of commands that will allow the user to
exercise the flexibility of the TWIN system. SDOS provides commands that:

* Perform disk and file maintenance

* Set the mode for I/O channels

* Perform system utility fUnctions

* Allow the user to control execution of programs

* Display important system status

* Mánipulate and modify object code

These ccemands, as well as SDOS, are described in 0hapter 4.
There are two other features of SDOS that deserve mention. There are the Debug
Monitor and the PROM programming capability.

2-6

2.3.1.1 	THE DEBUG MONITOR

The Assembler can only detect syntax errors in a source program. There
usually remain a nunber of logic errors in an object program which cannot be
detected by the Assembler. An object program is therefore executed in
conjuction with the Debugger in order to detect logic errors. The Debugger is
able to control the execution of object programs while examining, changing or
tracing the contents of memory, registers or system status.

The Debug monitor executes in master memory. All Debug I/O functions are
performed by SDOS. Due to the fact that the master CPU may not access the
slave CPU registers directly, a small section of the Debugger is placed in
slave memory to make slave CPU registers available to the Debugger for
examination and modification.

2.2.1.2 	PROM PROGRAMMING

SDOS provides a series of commands that allow PROMS to be read, written and
compared with slave memory. All these commands apply to the PROM sockets
located in the front panel.

2.3.2 	THE EDIIUR

After a source program is conceived and designed, it is then input to the TWIN
system through the use of a program called the Editor, which will store a
key-entered source program on the floppy disk. The Editor is also used to
modify source programs that already exist on mess storage.

The Editor runs in slave memory using the slave CPU. All remaining available
slave memory is used for the Editor's text buffer, which is the location of
the data operated on by the Editor. SDOS performs all the Editor's I/O
requests.

2.3.3. 	THE ASSEMBLER

After a source program has been entered and stored on disk, it must be
translated into a machine-executable object program. This function is
performed by the Assembler, which stores the object code it has assembled from
the source program on mass storage.

The Assembler runs in slave memory using the slave CPU. The Assembler ases the
available part of slave memory for I/O buffers and to create its symbol
tables. SDOS handles all the Assembler's I/O requests.

2.3.4 	SYSTEMS READINESS TEST

The Systems Readiness Test aliows the user to insure that the TWIN system is
operational. This test is described in Appendix E.

CHAPTER 3

SYSTEM OPERATION

3.0 	INTRODUCTION

This chapter describes unpacking, installation, interconnection, and initial
operation of the system. Refer to the individnal peripheral manuals provided
for specific installation procedures for these units.

3.1 	UNPACKING

The system is shipped with each major unit in a separate carton. Before
unpacking the units, inspect each carton for signs of external damage. If any
damage is detected, make a note on the shipper's receipt.

3.1.1 	UNPACKING THE TWIN DEVELOPMENT COMPUTER

To unpack the TWIN development computer, open the carton and remove the unit
from its packing supports. Place the computer on a bench top and remove the
top cover. Remove the packing material from the printed circuit boards and
install them in the proper card slots. The correct position for each board
is shown in Figure 3-1. The boards are keyed to prevent them from being
installed backwards. Push each board firmly into its mother board socket.
Untape and remove the power-on switch keys from the chassis and place in the
key switch.

Connect the ribbon cable from the front panel to P3 on the Debug card, the
ribbon cable from J108 on the rear panel to P2 on the Master CPU card, the
ribbon cable from the left-most PROM socket on the front panel to P2 on the
1702A Progrwner card (if included in the system), and the ribbon cable from
the center socket on the front panel to P2 on the 82S115 Progranner card (if
included in the system). Note that the red wire on each cable indicates the
end of the cable to be connected to pin 1 of its coating connector. A top view
of the computer unit with cards and cables properly installed is shown in
Figure 3-2. Do not replace the top cover at this time.

3.1.2 	UNPACKING THE CRT TERMINAL

Open the carton and remove the packing material from the top of the unit.
Lift the terminal and the keyboard out of the carton and set it on a bench top.

J1 	1702A PROM PROGRAMMER

J2 	82S115 PROM PROGRAMMER

J3 	GENERAL PURPOSE I/O

J4 	4K RAM/2K PROM - MASTER

J5 	4K RAM - MASTER

J6 	4K RAM - MASTER

J7 	4K RAM - MASTER

J8 	MASTER CPU

J9 	DEBUG AND FRONT PANEL I/O

J10 	SPARE

J11 	4K RAM - SLAVE

J12 	4K RAM - SLAVE

J15, 	4K RAM - SLAVE

J14 	4K RAM - SLAVE

J15 	SPARE

J16 	SPARE

J17 	SPARE

J18 	SPARE

J19 	SPARE

J20 	2650 SLAVE CPU

FIGURE 3-1

DEVELOPMENT COMPUTER PC BOARD LAYOUT

3-2

FIGURE 3-2
DEVELOPMENT COMPUTER (TOP VIEW)

3-3

No further installation is required until the system is ready for interconnec-
tion and operation.

3.1.3 	UNPACKING THE FLOPPY DISK UNIT

To unpack the floppy disk unit, open the eerton and remove the packing supports.
Lift the unit out of the carton and place on the bench top. Remove the top
cover and remove the packing material from around the controller printed circuit
board. Make sure the board is secured in its card guides. Unwind the floppy
disk and printer interconnect cables and feed them through the channel provided
for them in the rear panel. Insure that the ribbon cables are firmly installed
in their sockets. Replace the top cover and open the two diskette loading doors.

3.1.4 	UNPACKING THE LINE PRINTER

To unpack the line printer you must have the following tools available: 1) 17 mm
and 19 mm socket wrenches, or 2) an adjustable wrench. Remove the tape or
straps holding the outer cardboard eerton to the wooden pallet. Lift the carton
off the pallet. Remove the plastic covering the printer. To complete the un -
packing, refer to the detniled instructions packed with the printer. These in-
structions also provide the necessary information on paper installation
procedures.

3.1.5 	INSTALLING THE TWICE DEBUG CABLE

It is recommended that the TWICE debug cable be set aside until required for
prototype system checkout. At such time, instnll the cable as follows. Remove
the top cover from the computer unit. Unwind the cables from the TWICE interface
asseMply. Feed the ribbon cables marked P2 and P3 through an access slot in the
rear panel and connect them to their corresponding connectors P2 and P3 on the
slave CPU card. Replace the top cover. Turn off the pover on the user proto-
type system. Connect the 40 pin TWICE connector to the 2650 socket on the user
prototype system, making sure that pin 1 aligns correctly. The TWIN system is
nov ready for TWICE operation.

3.2 	INTEROONNECTION AND PHYSICAL INSTALLATION

The units should be placed on a convenient flat surface, close enough to each
other for the interconnecting cables to reach. Since the CRT terminal and the
TWIN development computer draw cooling air through openings in the bottom of
their cabinets, these units should be located where it is unlikely that paper,
plastic, carpeting or other materials will be drawn into the air intake and
cause overheating. The other units draw cooling air from openings in the rear
panel.

3.2.1 	PCWER REQUIREMENTS

Each system unit has a separate power oord and requires a separate outlet for
primary power. CUrrent requirements are as follows:

Developnent Computer: 	3.5 amperes at 115 VAC, 60 Hz
1.8 amperes at 230 VAC, 50 Hz

Dual Floppy Disk Unit: 	4.0 amperes at 115 VAC, 60 Hz
2.0 amperes at 230 VAC, 50 Hz

Line Printer: 	3 amperes at 115 VAC, 60 Hz
1.6 amperes at 230 VAC, 50 Hz

CRT Terminal: 	2 amperes at 115 VAC, 60 Hz
1.1 amperes at 230 VAC, 50 Hz

3.2.2 	INTEROONNECTION

Before connecting any units to the primary power source, turn all power
switches to the off position. Rotate the development computer key switch
fully counterclockwise. Insure that all units are wired for the primary input
voltage used.

Make the system interconnections as follows:

1. Connect the dual floppy disk unit to the development computer by
routing the 50 lead ribbon cable (90014021) from the rear of the
disk unit through the center cableway on the rear of the computer to
P3 of the Master CPU card. Insure that pin 1 of the cable (red
stripe) is mated to pin 1 of P3. Replace the top cover on the
computer unit.

2. If a line printer is used, connect the ribbon cable (90014172) from
the rear of the floppy disk unit to the connector on the rear panel
of the printer. Lock the cable in place.

3. Connect the CRT terminal to the development computer by insta1ling the
cable (90014191) between J108 on the computer rear panel and the I/O
connector on the rear panel of the terminal. The ends of the cable
are identioal.

4. If multiple disk units are included in the system, refer to the
special instructions packed with the system for installation of the
additional units.

3-5

5. Connect all power cords to the line power source.

3.3 	SYSTEM CONTROLS AND INDICATORS

The operator controls and indicators for the system units, including
peripherals, are described below.

3.3.1 	DEVELOPMENT COMPUTER

Referring to Figure 3-3, the following controls are located on the computer
front panel:

1. The key-operated switch controls primary power to the unit. When
the key is rotated fully clockwise, power is applied; when the key
is rotated fully counterclockwise, power is off and the key may be
removed.

2. The back-lighted display has the following legends:

PWR lights when primary power is applied.

MSTR lights when the master CPU has control.

SLV lights when the slave CPU has control.

RUN lights when the system is running.

3. The DIAG INT switch initiates a re-load of SDOS when the system is
in the RUN state. Control is returned to the master CPU. This
switch is used with the maintenance diagnostic software.

4. The RESET switch terminates any program in progress. The hardware
is initialized, and the operating system is reloaded.

5. The PROM PWR switch enables or disables PROM programming power at the
front-panel PROM sockets. When enabled, the PPWR indicator above the
switch is lighted. PROM PWR should be off whenever devices are inser-
ted or removed from the sockets.

6. PROM programming sockets. The leftroost socket (PROM1) is used for
programming type 1702A MOS PROMs. The center socket (PROM2) is used
for programming type 82S115 bipolar PROMs. The rightmost socket
(PROM3) is reserved for future use. All three sockets are zero
insertion force sockets.

3-6

FIGURE 3-3
COMPUTER FRONT PANEL

Referring to Figure 3-4, the following items are located on the rear panel.

1. AC IN is the connector for primary power, using the power cable
supplied with the unit.

2. The 115/230 slide switch selects the internal voltage taps for 115V
or 230V operation. Insure that F3 and F4 contain the proper fuses
for the selected voltage.

3. The barrier terminal strip allows connection of an external supply to
a separate motherboard bus line and allows the user the choice of
chassis grounded or floating logic. To connect signal ground to chas-
sis ground, connect the terminals so marked together.

4. Fases protect the internal power supplies. Fij is the fuse for primary
power input. F3 independently fuses the +12V power supply. F1 and F2
fuse the PROM programmer AC secondary voltage.

5. J108 is a female connector used to connect the CRT terminal or the
teletype to the computer.

3.3.2 	DUAL FLOPPY DISK UNIT

The floppy disk unit has a single front-panel power on/off push-button switch
that is lighted when primary power is on.

The disk unit rear panel contains a connector for disk expansion, a fase for
primary power, and a connector for the power cable.

3.3.3 	CH1 TERMINAL

The terminal consists of a CRT unit and keyboard. The keyboard layout closely'
approximates an ASR-33 Teletype. Refer to the CRT terminal operator's manual
for details of terminal operation.

3.3.4 	PRINTER

The optional printer is a Centronics 306C. Refer to the Centronics 306C opera-
tor's manual for details of printer operation.

52
WARNING

VALV,

FIGURE 3-4

COMPUTER REAR PANEL

3.4 	OPERATION

To power up the TWIN system and load
perform the following steps:

1) Power up the CRT terminal.
will appear on the screen.
level.

the operating system (SDOS) into memory,

After a brief warm-up period, the cursor
Adjust the intensity to the desired

2) Power up the floppy disk unit.

CAUTION

DO NOT TURN P(WER ON OR OFF THE DISK
UNIT WITH DISKETTES INSTALLED AND
DCORS CLOSED AS MEDIA DATA MIGHT BE
DESTROYED.

3) Allow a five minute warm-up time to allow the disk drive electronics
to reach stable temperature.

4) Insert the system diskette into drive 0. The correct method for
inserting a diskette is shows in Figure 3-5. Insure that the label
area is toward the power switch on the disk unit and is the last
part of the diskette inserted into the drive. Close disk drive door.

5) Apply power to the printer.

6) Apply power to the TWIN development computer. This will cause an
automatie read from drive 0 which will load SDOS into master memory.
When SDOS has been loaded, a welcoming message will be displayed on
the terminal:

SDOS VER X.Y

The > is the SDOS prompt character which infOrMIS the user that SDOS is
ready to accept cornands.

If the welcoming message does not appear within 15 seconds, depress the
RESET switch. If the system does not respond correctly again, an
improper diskette or a faulty drive may be the problem. Try again with a
new system diskette and/or using drive 1.* If trouble persists, request

*Note: The TWIN computer will automatically switch the initialization process
to drive 1 if attempts to load from drive 0 fail repeatedly.

FIGURE 3-5
INSERTING A DISKETTE

service assistance. If the welcoming message is incorrect, the baud
rate-setting of the CRT may not correspond to the rate selected on the
Master CPU card. Select the correct baud rate on the CRT terminal rear
panel. Refer to the TWIN System Reference Manual for information on
changing the baud rate on the Master CPU card.

3.4.1 	MANUAL RESET

If a reinitialization of the system is desired during operation, the user may
reload SDOS by pressing the RESET switch on the front panel. The welcoming
message and the prompt character will be issued after SDOS has been loaded.

CHAPTER 4

SIGNETICS DISK OPERATING SYSTD1

4.0 	INTRODUCTION

This section describes the Signetics Disk Operating System (SDOS) for the ZWIN
system. General topics inluie the use of the keyboard to enter commands or
request control for the system, an overview of the SDOS file structure, a
catalog of the SDOS commands and their functions, and a study of the command
file capability and overlay areas. In addition, summaries of the SDOS
canmands and SDOS error messages are provided.

Before a description of SDOS is presented, several concepts, pertaining to
diskettes and the disk drives, require explanation:

1) Before any new diskette is used, THE NEW DISKETTE MUST BE FORMATTED
AND VERIFIED. All diskettes purchased from Signetics are pre-for -
matted and verified and therefore do not require these operations
before use. If a diskette must be formatted, follow the procedures
outlined in the discussion of the SDOS commands FORMAT and VERIFY
(Section 4.4.4).

2) On every diskette, there is a write protect slot (see Figure 3-5).
If this slot is covered, the diskette is write enabled, meaning that
data may be written onto the diskette. Data may also be read from
the diskette. If this slot is not covered, the diskette is write
protected, meaning that data may not be written onto the diskette,
but may only be read from the diskette. If an attempt is made to
write to a write-protected disk, the appropriate SDOS error message
will be displayed.

3) In a typiral TWIN system, there are two disk drives.

Drive 0 is usually the system drive. The system drive is the drive
which SDOS accesses when it must load a system program. The system
drive is also the drive used when a drive number is not specified
with a file name. The diskette loaded on the system drive is known
as the system diskette and must contain the system programs. The
system diskette can be write protected to ensure that the system
programs are not altered.

Drive 1 usually contains a user diskette which contains user files.
This diskette is used for modifying user files or as a scratch data
area, and may or may not contain the system programs. This diskette,

0

0

since it may be used as a scratch area, is not write protected.

4.1 	ENTERING SDOS CCMMANDS

When the prompt character, > , is displayed, the user is allowed to enter
commands to SDOS. These ccomands will all have a similar fbrmat. The fort is:

> command parameters 0

where:

command 	is the name of the command to be executed;

parameters is the required or optional list of parameters for the
specified command; and

is the RETURN key

The command is always separated from its parameters by one or more spaces
or by a comma.

For example, if the user entered the underlined portion of the following line:

> LDIR 0()

LDIR would be the command to be executed and 0 would be the parameter for
LDIR. When one presses the RETURN key, SDOS is told that a command is waiting
to be interpreted. SDOS identifies the command and loads the appropriate
program into master memory. Control is passed to the loaded program to
perform the requested function. In the LDIR 0 example, the command LDIR,
which is the List Directory command, is identified by SDOS, and results in the
List Directory program being loaded and executed. The parameter, 0, specifies
the drive whose directory will be listed. The listing will be displayed on
the console.

If one desired a listing that included the system files, the following entry
should be made:

> LDIR 0 .
where:

LDIR is the command, and

0 and . (which requests that system files be included in the directory
listing) are the parameters.

4-2

Note that a space separates or delimits the two parameters. When two or more
parameters are present in a carmand line, they must be separated by spaces, or
by a comma (,). Since the comma is also a delimiting character, the following
walend line is interpreted by SDOS in the same way as the above example:

> LDIR, 0,.0)

The space and comma can be used as delimiters in the same command line.

4.2 	SPECIAL KEYS

SDOS pays special attention to certain keys in order to facilitate the entry
of =mand lines and operator control of the system. These keys are DELETE
(or RUBOUT), ESCAPE, and the space bar. SDOS also recognizes CTRL-Z as a
special character.

Suppose the operator was entering the command LDIR 0,. discussed in the
previous section, miskeyed, and instead entered:

>LDK

To remove the incorrect character, 'K', from the buffer, the DELETE key is
used. One depression of the DELETE key deletes the last character in thé
buffer, and echoes that character to the console. While the console displays:

>LDKK

the buffer contains LD. The entry of the command line can then be completed
as if the K was never entered.

Suppose the error in the entry was of this nature:

>;DIR 0

and as the operator prepares to enter the delimiting character, notices that
";" was entered instead of "L". Rather than pressing DELETE six times to
reach the incorrect character, the operator may delete the entire line through
the use of the ESCAPE key.

Pressing the ESCAPE key during entry of a command line can result in different
SDOS responses depending on the current system mode. The possible system
input modes are:

a) Input is being performed for an SDOS comm end line;

14-3

b) Input is being performed for the Text Editor;

c) Input is being performed for a user application program.

No matter which of these modes the system is operating in, the current input
line will be deleted.

If command input for SDOS is being performed, which is the case in the ;DIR 0
example, the system will delete the current command line and then respond with
a double prompt, >>. An exception to this rule occurs when the EXAM command is
being performed. If the ESCAPE key is pressed while EXAM is being performed, the
memory locations which were altered prior to the key depression will remain
altered.

If the Text Editor is running, the response will be the Editor prompt character
(*), except if the Editor is in the INPUT mode, in which case no prompt charac-
ter will be displayed.

The system response when a user application program is running will depend on
what the user has programmed as a response.

The system response to a depression of the ESCAPE: key when an SDOS or user pro-
graM is executing, as distinguished from console input being performed, is
discuseed in Section 4.4.2, Sysban Control Commands.

The space bar (key) allQws the user to control system output to the console.
Sappose the user has completed entering the LDIR 0,.ecommand and the system is
listing the directory on the console. Depressing the space bar once will tem-
porarily pause output to the console and allow the user to examine the directory
before it "scrolls" off the top of the CRT. Depress the space bar once again
and the listing will reeume.

CatiLm-Z, which is formeel by holding the CTRL (CONTROL) key down while pressing Z,
is treated as an end-of-file character when an ASCII read is being performed
fróm the console or other system input device.

4.3 	FILES, DEVICES, AND£HANNELS

SDOS is a file-oriented system. The understanding of a file-oriented system is
greatly enhanced by understanding the concepts of a file, a device and a
channel.

A file is a set of data. The set has a loginAl beginring and a loginAl end.
For example, the government's file on a person's tax return might begin with
the first return filed by the person and end with the last return filed. In

4-4

between the first return and the last return there could be other returns,
audits, etc. All the information beginning with the first return and ending
with the last return is the file. In the TWIN system, files are stored on
floppy diskettes. Disk files can be accessed through their logical beginning
address, a map that indicates where the data in the file is located on the
disk, and a logical ending address.

Devices are physical peripherals that provide input and output services for
SDOS. The five standard devices are the console input device, the console
output device, the line printer, the high speed paper tape reader and the
teletype reader. These devices all have reserved names through which the user
can access thee. These names appear in Table 4-1.

TABLE 4-1
DEVICE NAMES

DEVICE NAME
	

DEVICE
CONI
	

CONSOLE INPUT
CONO
	

CONSOLE OUTPUT
LPT1
	

LINE PRINTER 1
LPT2
	

LINE PRINTER 2
HSPT
	

HIGH SPEmD PAPER TAPE READER
TTYR
	

TELETYPE READER

For example, the wanend:

COPY TTYR LPT1

would copy the information from the teletype paper tape reader to the line
printer.

NOTE
ALTHOUGH SDOS SOFTWARE SUPPORTS A HIGH
SPEED PAPER TAPE READER, THIS PERIPHERAL
IS NOT CURRENTLY AVAILABLE FOR THE WIN
SYSTEM.

Files may also be viewed as devices. Files can be specified as input or output
devices. To refer to a file as a device, the operator must refer to the file
name for that file. In addition, if the file is not located on the diskette in-
stalled in the system drive, it may be necessary to specify the drive on which
the file is located. SDOS can automatically create the necessary new files or
search other diskette directories.

A filename has the following propertjes:

1) The filename must contain at least one but not more than eight
characters.

2) The characters in the name must come from the following set:

The alphabetic characters (A - Z)
The numeric characters (0 - 9)
These special characters: !, ", #, %, &, 	(,), *, ;, =, and ?.

3) The filename may not begin with a numeric character.

4) The filename must not be one of the reserved names which identify
physiral devices: CONO, CONI, LPT1, LPT2, HSPT or TTYR.

5) The filename is unique to the diskette containing the file.

Every diskette has a system area, ea1led the directory, where system information
is kept on all the files on the diskette. This infbrmation includes the file-
name, disk sectors used, beginning and ending disk addresses, etc. The direc-
tory also includes system infbrmation which prevents bad disk sectors from being
allocated for file usage.

SDOS is only aware of diskettes that are loaded in the available disk drives.
For this reason, diskettes are not referred to by diskette name; rather, they
are referred to by drive number. As an example, suppose you had diskettes
loaded in drives 0 and 1. Drive 0 is the system drive. There is a file named
DATA1 on drive 0 and a file named DATA1 on drive 1. If it was necessary to
copy DATA1 to the line printer, how would this be accomplished? The action is
performed by specifying a drive number to indicate which DATA1 is to be
copied. To specify the drive, append the drive number to the file name. This
is done by following the filename with a '/' to separate the filename and
drive and then inserting the drive number. To copy DATA1 on drive 1 to the
line printer, the following corrmand would be performed:

COPY DATA1/1 LPT1

If no drive number is appended to a filename, SDOS normally assunes that the
file resides on the system drive, and will search the system drive directory
for the file. See the SEARCH carmand for an alternative mode.

Channels are used by the program running on the slave CPU. The user can assign
a channel to a device using the ASSIGN =rand. When this is accomplished, the
slave is able to perform input or output to the device through the channel.
The devices specified in the assignment may be physical devices or files.

4-6

4.4 	THE SDOS CiaMMANDS

This section provides a deseription of all SDOS °iemands with the following
exceptions:

* Commands that are primarily used in conjunction with the OOMMAND
FILE facility are described in Section 4.6.

* The EDIT command is described in Chapter 5.

* The ASM ccmmand is described in Chapter 6.

* Commands that are used for PROM programming and verification are
described in Chapter 7.

* Commands that are associated with the Debug function are described
in Chapter 8.

4.4.1 	THE SDOS DOMMAND DESCRIPTIONS

All SDOS command line specifications are'enclosed in this fashion:

command parameter

The command line descriptions are followed with a description of their
function. Most descriptions proceed as fellows:

1) The command line is presented. Parameters that are optional are
enclosed in parentheses. Three periods (...) indicate that the
preceding parameter may be repeated as many times as the limita-
tions of the command allow. The minimum characters required
to initiate the command are underlined. For example:

COPY INPUT (...INPUT) OUTPUT

COP INPUT OUTPUT, where INPUT and OUTPUT are two filenames, is the
minimum COPY cammand that will be executed. Additonal INPUT files
may be specified as in COP IN= INPUT2 INPUT3 OUTPUT.

2) The first sentence provides a brief description of the carmand's
function.

3) The parameters associated with the command are discussed. The
effect of parameters on execution and their default values, if any,
are described.

14-7

t4) If further discussion of the command is necessary, the reasoning
behind the ca►mand, its logic flcw, or possible problems will be
analyzed in the next paragraph.

5) The error messages that the command might display are listed.
The format and a list of SDOS error messages is presented in
Section 4.7.

In, the command line specification, several terms and conventions are used.
The terms and conventions involved are NAME, CH, DEVICE, ADDRESS or Ai,
FILENAME, D and L.

NAME 	refers to a program name. For example, ABORT NAME requests that the
program NAME be aborted. IF the program VAIL was to be aborted,
ABORT VAIL would be used.

CH 	refers to a channel number. Channel numbers may be in the range 0 - 7.
For example, if channel 2 veere to be assigned to the line printer, 2
would replace CH and LPT1 would replace DEVICE in the ASSIGN CH
DEVICE command. This would result in ASSIGN 2 LPT1 being executed.

DEVICE refers to any of the system devices or to any disk files. For
example, if channel 3 veere to be assigned to the disk file SRCCD/1, 3
would replace CH and SRCCD/1 would replace DEVICE in the ASSIGN CH
DEVICE ccnrand. This would result in ASSIGN 3 SRCCD/1 being executed.

ADDRESS
or Ai refers to a hexadecimal address constant between 0 and 1.1.141.. 	For

example, MODULE FILENAME, Al, A2, A3 could be replaced with MODULE
LDFLE, 100, 2FFF, 80.

FILENAME refers to a disk filename. To edit the file DTA1/1 using the Editor,
the user would replace EDIT FILENAME with EDIT DTA1/1.

4-8

D 	refers to the disk drive number. To duplicate the diskette on drive
0 on the diskette on drive 1, 0 veuld replace D1 and .1 would replace D2
in the DUP D1 D2 command. This would yield a DUP 0 1 command.

L 	refers to a line number. To list the 8th through 14th lines of a
file name DTA1/1 on the line printer, the user would replace PRINT
FILENAME (L1L2) with PRINT DTA1/1 8 14.

4.4.1.1 	SDOS CCMMAND CCMPLETION

Most SDOS commands indicate that they have completed their function by
displaying an End-of-job message. The form of this message is *id* EOJ where
'id' is the SDOS system program identifier (see Table 4-3) and EOJ is the end
of job message. Completion of any user-entered ccmmand causes the SDOS prompt
character '>' to be displayed.

4.4.2 	SYSTEM CONTROL COMMANDS

The user may control system or slave programs through these special keys:

ESC
SPACE BAR

The ESC ESC sequence is used to suspend system or slave programs and to return
control to SDOS. The SPACE BAR key is used to control SDOS displays.

The user may also control the execution of system or slave programs and
control the slave channels with these commnds:

SUSPEND
CONT
ABORT
ASSIGN
CLOSE

SUSPEND halts program execution. CONT restarts suspended programs. ABORT
terminates program or command execution. ASSIGN forms a connection between a
slave channel and a device. CLOSE terminates the logica1 connection formed in
an ASSIGN command.

ESC
or
FSC ESC

A single depression of the ESCAPE key has two possible interpretations:

a) If input was being performed to SDOS, the Editor or an application
program, refer to Section 4.2 for a discussion of the actions taken.

b) If an SDOS or user program is executing, a single depression of the
ESCAPE key will result in that program being temporarily suspended,
unless the program is one of the following four SDOS programs:

LDIR
TRACE
STATUS
DIEP

If one of these four programs is executing, a depression of the
ESCAPE key will terminate its execution. To restart any of the
other SDOS programs or the user program, either press RETURN or
enter a valid SDOS command.

When the ESCAPE key is hit, SDOS will respond with a double prompter
to record the fact, unless a command line is being input to the
Editor or to a user application program.

Two consecutive depressions of the ESCAPE key will result in all active programs
in the system being suspended. No program suspended by this double depression
of the ESCAPE key will resume execution unless the user issues a CONT (Continue
Execution) command.

SPACE BAR

The space bar key is discussed in Section 4.2.

4-10

SUSPEND NAME
or
SUSPEND *
or
SUSPEND /

This command suspends the execution of active programs. The DEBUG program may
not be suspended.

SUSPEND NAME suspends the specified program. SUSPEND * suspends all active
programs. SUSPEND / suspends the slave program.

The primary use for this command is in conjunction with the COMMAND FILE
capability discussed in Section 4.6. Inserting this command in a COMMAND FILE
will suspend system operation to allow some required user action, such as
inserting a special diskette into one of the drives.

SUS ERROR RESPONSES

24 - JOB NOT ACTIVE
26 - JOB ALREADY SUSPENDED
31 - PARAMETER REQUIRED

CONT NAME
or
CONT *
or
LONT /

This command continues the execution of a suspended program.

CONT NAME causes the specified program to be continued. CONT * causes all
suspended programs to be continued. CONT / continues the slave program.

A program may be suspended in one of two ways. 1) If the ESCAPE key is
depressed twice in succession, SDOS will have suspended all programs. 2) The
user may suspend programs through the use of the SUSPEND command.

CCN ERROR RESPONSES

24 - JOB NOT ACTIVE
25 - JOB NO SUSPENDED
31 - PARAMETER REQUIRED

ABORT NAME
or
ABORT *
or
ABORT /

This command causes an active SDOS or user program to be,aborted.

ABORT NAME causes the specified program to be aborted. ABORT * causes all
active programs to be aborted. ABORT / causes the slave program to be aborted.

All ABORT commands close the channels used by the programs that are aborted.

ABT ERROR RESPONSES

24 - JOB NOT ACTIVE
31 - PARAMETER REQGIRED

CLOSE CH (...CH)

This command causes the specified channels to be closed. The channel numbers
must be in the range 0-7.

The logical connection between channel and device that was created in the
ASSIGN command is severed, and the channel and device are no longer logically
related. If the channel was assigned to a disk output file, the data
remaining in the SDOS deblodking buffer will be output to the file before it
is closed.

CLS ERROR RESPONSES

2 - DIRECTORY WRITE ERROR
7 - DEVICE WRITE ERROR
19 - INVALID CHANNEL NT}IBER
31 - PARAMETER REQUIRED
62 - DEVICE NOT OPERATIONAL
64 - INVALID DISKETTE

ASSIGN CH DEVICE (...CH DEVICE)j

This command causes the connection of the logical slave channel CH to the
specified DEVICE. CH must be in the range 0-7. DEVICE must be one of the
system device names or the name of a disk file.

The ASSIGN command views every disk file as an independent physical device.
When a disk file name is used as DEVICE in the ASSIGN command, the directory
of the diskette is searched for the filename. If the filename is not found,
the file is created in the directory.

The specified channel is connected to DEVICE, Which results in all subsequent
I/O operations on the channel being performed on DEVICE.

The ASSIGN command applies to the user channels only.

ASN ERROR RESPONSEs

1 - DIRECTORY READ ERROR
9 - INVALID DRIVE NUMBER
12 - INVALID FILE NAME
19 - INVALID CHANNEL NUMBER
20 - CHANNEL IN USE
21 - CHANNEL ASSIGN FAILURE
31 - PARAMETER REQUIRED

4.4.3 	SYSTEM OPTIONS

The user may set the value of various system options with these camiands:

SEARCH
SYSTEM
DEVICE

SEARCH allows the user to invoke the autematic file searching system. SYSTEM
allows the user to designate the system drive. DEVICE informs SDOS of device
status.

SEARCH ON (N)
or
SEARCH OFF

This command turns the automatie file searching flag, SEARCH, ON or OFF. The
default value of SEARCH is OFF. N specifies the number of drives in the user
system. The default value of N is 2. If N is given, it must be greater than
the number of the system drive.

If automatie file searching is not being performed, i.e, SEARCH is OFF, then
when the user specifies a filename, SDOS only searches the directory of the
specified drive for the file. (If no drive is specified, the default value is
the system drive.)

If automatie file searching is being performed, i.e., SEARCH is ON, then when
the user specifies a filename but not a drive number, SDOS will search, in
circular fashion, N directories, beginning with the system diskette, for that
filename. If the filename is not found, it will be created on the first
diskette which can contain a file. If that diskette is write protected, a
directory write error will result.

This feature is very useful when drive 0 is a write protected system diskette
and all user files are on drive 1.

SCH ERROR RESPONSES

30 - INVALID PARAMETER
31 - PARAMETER REWIRED

1
.,,SYSTEM D

This commánd designates drive D as the system disk drive.

This command allows the user to designate any disk drive attached to the
system as the system drive.

The default value for the system drive is 0.

ERROR RESPONSES

9-INVALID DRIVE NLEBER

DEVICE bEVICE U
or
DEVICE DEVICE D

This command informs SDOS of the availability of a peripheral device. The
argument DEVICE must be one of the system device names (see Section 14.3).

If U is specified as the second argument, the system is informed that the
device is UP, or available for use. If D is specified as the second argument,
the system is informed that the device is DOWN, or not available for use.
Either U or D must be specified.

*DEVII.ERROR RESPONSES

30 - INVALID PARAMETER
31 - PARAMETER REQUIRED
52 - INVALID DEVICE

4.4.4. 	SYSTEM UTILITIES

The user can perform disk and file maintenance and move data around the TWIN
system with these commands:

FORMAT
VERIFY
RENAME
DUP
LDIR
DELETE
COPY
PRINT

FORMAT initializes the diskette for use by the TWIN system. VERIFY detennines
if bad blocks exist on the disk and catalogs the location of the bad blocks.
RENAME changes the name of a disk file or changes a disk identification. DUP
duplicates diskettes. LDIR lists the directory of a specified diskette.
DELETE removes files from the disk. COPY copies data from one part of the
system to another. PRIKT outputs the contents of a disk file on an appropriate
device.

FOKMAT D (IDENT)

This command causes the diskette on drive D to be formatted. The ASCII
character string IDENT is used to identify the diskette. D may not be the
designated system drive. IDENT is truncated if it is longer than 48 characters.

The formatting process is primarily performed by the floppy disk controller
and involves writing doek bits, sync patterns, the track and sector number, a
data pattern and a CRC character on every sector of the diskette. During the
formatting process, the directory is preset to indicate that tracks 1 through
4 are in use. This serves to reserve those tracks for SDOS. If a bad sector
is detected on tracks 0 through 4 (the directory and SDOS area) the formatting
process is aborted. If the diskette will not be used for storage of system
software, the area reserved for SDOS may be freed for use by use of the DELETE
command. This, however, will prevent ever using this diskette as a system
disk.

When the formatting process is completed, the ASCII character string IDENT
is written to the diskette and serves as the diskette identification.
This identification is displayed when the LDIR command is used to list the
diskette directory. Note that if IDENT is not specified, a string of blanks
will be used to identify the diskette.

VIRGIN DISKETTES MUST BE FORMATTED AND VERIFIED BEFORE THEY CAN BE USED BY
SDOS.

PET ERROR RESPONSES

2 - DIRECTORY WRITE ERROR
9 - INVALID DRIVE NUMBER
17 - OUTPUT DEVICE ASSIGN FAILURE
18 - DEVICE IN USE
47 - SYSTEM AREA BAD

VERIFY D

This =mand causes the diskette on drive D to be verified.

The verification process consists of reading every sector on the diskette and
noting all the errors that occur. If, When a sector is read, an error occurs,
bits corresponding to all the logical blocks on the track which contains the
bad sector are set in a Bad%Blodk Bit Map. In addition, the track and sector
nUmber of the defective sector are output to the console. When all the sectors
1~ been read, the Bad Block Bit Map is written on the diskette. Whenever
files are created and disk space allocation for the file is performed,
reference will be made to the Bad Block Bit Map and the defective blocks will
not be allocated.

If a defective sector is detected on any of tracks 0 through 4 (the SDOS
system area) during the verification process, the process will be aborted and
an appropriate message will be displayed on the console.

VER ERROR RESPONSES

1 - DIRECIORY READ ERROR
2 - DIRECTORY WRITE ERROR
9: - INVALID DRIVE NU1BER
16 - INPUT DEVICE ASSIGN FAILURE
18 - DEVICE IN USE
47 - SYSTEM AREA BAD

RENAME OLDFTT.F/D NEWFILE
or
RENAME D IDENT

The RENAME function has two forms. The first form renames the file OLDFILF, to
NEJFILE. This form requires that a drive number be specified with OLDFILE.
If a drive number is specified with NEWFTEE, it must be the same as the drive
number specified with OLDFILE.

The second form reidentifies the diskette on drive D with the character string
IDENT. When the string IDENT is used in the second form, IDENT will be
truncated if it is longer than 48 characters.

REN ERROR RESPONSES

1 - DIRECTORY READ ERROR
2 - DIRECTORY WRITE ERROR
8 - DRIVE NOT SPECielED
9 - INVALID DRIVE NUMBER
12 - INVALID FILE NAME
13 - INPUT FILE NOT FOUND
16 - INPUT DEVICE ASSIGN FAILURE
18 - DEVICE IN USE
30 - INVALID PARAMETER
31 - PARAMETER REQUIRED
32 - TOO MANY PARAMETERS
57 - FILE NAME IN USE

DUP D1 D2 (IDENT)

This command causes the diskette on drive D1 to be copied to the diskette on
drive D2. Diskette D2 is identified by the character string IDENT. D1 may not
be the same as D2, and D2 may not be the system drive. IDENT will be
truncated if it is longer than 48 characters.

D1 is copied to D2 by copying all the files on D1 to D2. In the event of a
disk read or write error during a file copy, the output file will be deleted
on D2, a warning message will be displayed, and the DUP process will continue
with the next file.

The diskette on drive D2 should be verified before the DUP command is
executed. 'Mis is done to establish the Bad Block Bit Map for the diskette.

DUP ERROR RESPONSES

1 - DIRECTORY READ ERROR
2 - DIRECTORY WRITE ERROR
6 - READ ERROR, DUP CONTINUES
7 - WRITE ERROR, DUP CONTINUES
9 - INVALID DRIVE NUMBER
16 - INPUT DEVICE ASSIGN FAILURE
17 - OUTPUT DEVICE ASSIGN FAILURE
21 - CHANNEL ASSIGN FAILURE

LDIR (D) (.) (1) (DEVICE)

This command lists the contents of the directory of the diskette on drive D on
DEVICE. If D is not specified, the directory of the system diskette will be
listed. If '.' is specified, the SDOS system files will be included in the
directory listing. If '/' is specified, diskette space allocation information
will be listed for each file in the directory. ~A summary of the total
diskette utilization will follow at the end of the directory listing. If
DEVICE is not specified, the listing will be displayed on the console.

DIR ERROR RESPONSES

1 - DIRECIDRY READ ERROR
7 - DEVICE WRITE ERROR
10 - OVERLAY LOAD FAILURE
15 - INVALID OUTPUT DEVICE
17 - OUTPUT DEVICE ASSIGN FAILURE

DELETE FILENAME/D (...FILENAME/D)

This command deletes all the filenameá specified in its parameter list. Each
filename must have a drive nunber associated with it. Each file specified in
the parameter list will be deleted from the directory of the disk on which it
resides, and the sector blocks allocated to the file will be released for
reallocation.

DEL ERROR RESPONSES

2 - DIRECTORY WRITE ERROR
8 - DRIVE NOT SPECIFIED
9 - INVALID DRIVE NUMBER
12 - INVALID FILE NAME
13 - FTLF, NOT FOUND
18 - DEVICE IN USE
21 - CHANNEL ASSIGN FAILURE
30 - INVALID PARAMETER
31 - PARAMETER REWIRED

COPY INPUT (...INPUT) OUTPUT

This command copies INPUT data to an OUTPUT file or device. INPUT is a disk
file or an input device. OUTPUT is a disk file or an output device.

If COPY INPUT OUTPUT is specified, data is copied from the specified INPUT
device or file to the specified OUTPUT device or file until an end-of-file
condition is encountered on the INPUT. If more than one INPUT is specified,
the data is copied to the OUTPUT file in the following manner:

1) The first INPUT is copied to OUTPUT until the end-of-file condition
is reached.

2) The second INPUT is then concatenated behind the first INPUT by
copying its data to OUTPUT directly after the first INPUT.

3) The third INPUT is then copied after the second, etc.

The copy process is completed when the last INPUT is written to OUTPUT, and
its end-of-file condition is reached. The OUTPUT file is then closed.

None of the INPUT files or devices may be the OUTPUT file or device.

When an ASCII file is being input from one of the system peripherals (CONI,TTYR,
or HSPT), the CONTROL,Z character is interpreted as the end-of-file condition.

*cce4 ERROR RESPONSES

6 - INPUT READ ERROR
7 - OUTPUT WRITE ERROR OR EOD
13 - INPUT FTLE NOT FOUND
11 - INVALID INPUT DEVICE
15 - INVALID OUTPUT DEVICE
16 - INPUT DEVICE ASSIGN FAILURE
17 - OUTPUT DEVICE ASSIGN FAILURE
30 - PARAMETER ERROR

PRINT FILENAME (DEVICE)(L1 L2)
or
PRINTL FILENAME (DEVICE)(L1 L2)

This command causes lines from FILENAME to be written to a specified output
DEVICE. If DEVICE is not specified, the data is printed on LPT1. If L1 and
L2 are specified, they must be greater than or equal to 1 and less than
32,768. L2 must be greater than or equal to Li.

If a line range is specified (L1 L2), only the lines from L1 through L2 will
be printed. If only L1 is specified, the lines from the first line through L1
will be printed. If no line range is specified, the entire file will be
printed.

If the PRINTL form is used, the lines will be numbered.

PRN ERROR RESPONSES

6 - INPUT READ ERROR
7 - OUTPUT WRITE ERROR OR END OF DEVICE
13 - INPUT FTLE NOT FOUND
14 - INVALID INPUT DEVICE
15 - INVALID OUTPUT DEVICE
16 - INPUT DEVICE ASSIGN FAILURE
17 - OUTPUT DEVICE ASSIGN FAILURE
30 - INVALID PARAMETER

4.4.5 	OBJECT PROGRAM UTILITIES

The user may manipulate object program files with these commands:

MODULE
RHEX
WHEX
CSMS
WSMS

MODULE writes a binary load module from slave memory. RHEX reads a hexadecimal
object file into slave memory. WHEX writes a hexadecimal object file from slave
memory. CSMS translates an SMS file and then compares the file with slave mem-
ory. WSMS writes a block of slave memory in SMS format. SMS format is used by
Signetics for the generation of PROMa and is described in Appendix D. Hexadeci-
mal format is described in Appendix C.

MODULE FILENAME Al, A2, A3 (IDENT)

This command writes a binary load module to FILENAME. A2 must be greater than
or equal to Al. IDENT is an optional character string used to identify the
module. IDENT will be truncated after the first 20 characters entered.

The contents of slave memory from Al to A2 will be output to the disk file
FILENAME. The load module will be preceded by a 'header' which will contain
the memory bounds Al and A2 and the starting address of the program, A3.

MOD ERROR RESPONSES

7 - DEVICE WRITE ERROR
10 - OVERLAY LOAD FAILURE
12 - INVALID FILENAME
32 - TOO MANY PARAMETERS
34 - INVALID ADDRESS

4-24.

RHEX (/BIAS) (DEVICE)

This command reads an absolute hexadecimal object file into slave memory.
BIAS is used to alter the initial load address for the file. The default
value of BIAS is 0. DEVICE is used to specify the input device or disk file
where the object code resides. The default value of DEVICE is TTYR, the
teletype paper tape reader.

The absolute hexadecimal file is read into memory from the specified input
DEVICE. The initial load address is altered by BIAS which is a signed
hexadecimal address constant. If no sign is specified, the default value is
assuned to be +.

The program start address given at the end of the object file will be ignored
by SDOS. It must be entered by the operator as part of the GO command when
emecution of the program is requested.

gliHX*ERRORRESPONSES

6 - DEVICE READ ERROR
14 - INVALID INPUT DEVICE
16 - INPUT DEVICE ASSIGN FAILURE
33 - BIAS PARAMETER ERROR
40 - INVALID INPUT FORMAI'

WBEX Al A2 ... („A1 A2) (A3) (DEVICE)

This command outputs an absolute hexadecimal file from slave memory. The pairs
Al,A2 are hexadecimal address constants that indicate the memory to be written.
A3 is an optional starting address. DEVICE is an optional output device or
file. If DEVICE is not given, the default value is CONO, the console output
device. If DEVICE is specified, then the starting address vector, A3, must be
specified.

This command writes, in hexadecimal format, the data from Al to A2 for each
Al, A2 pair present in the parameter list. Note that two commas are required
between address pairs if nultiple address pairs are specified.

WBX ERROR RESPONSES

7 - DEVICE WRITE ERROR
15 - INVALID OUTPUT DEVICE
17 - OUTPUT DEVICE ASSIGN FAILURE
30 - INVALID PARAMETER

4-25

.5MS (ADDRESS) (DEVICE)

This command reads a file that is written in SMS format from DEVICE, translates
the data to binary, and compares the data with slave memory. ADDRESS refers to
the first location in slave memory that will be compared with the SMS file. The
default value of ADDRESS is 0. DEVICE is the input device or disk file where
the SMS data is present. The default value of DEVICE is TTYR. CONI cannot be
the input device.

The SMS file is compared with a 512-byte block of memory. If an SMS byte and
the contents of a memory location are not equal, the memory location, the SMS
value, and the contents of the memory location will be displayed on the
console.

SMS ERROR RESPONSES

6 - DEVICE READ ERROR
13 - INPUT FILE NOT FOUND
14 - INVALID INPUT DEVICE
21 - CHANNEL ASSIGN FAILURE
30 - INVALID PARAMETER
35 - INVALID ADDRESS

kialS (ADDRESS) (DEVICE)

This command outputs a 512-byte block of slave memory in SMS format. ADDRESS
specifies the first location of memory to be written. The default value of
ADDRESS is 0. DEVICE specifies the output device or disk file where the SMS
data is to be written. The default value of DEVICE is CONO.

SMS ERROR RESPONSES

7 - DEVICE WRITE ERROR
15 - INVALID OUTPUT DEVICE
21 - CHANNEL ASSIGN FAILURE
30 - INVALTD PARAMETER
35 - INVALID ADDRESS

4.5 	RESIDENT SDOS AND OVERLAY AREAS

SDOS is split into two sections: Resident SDOS which is always present in the
master memory, and the SDOS overlays, which are loaded into the master memory
automatically from the 'system' diskette upon invoking certain SDOS commands.

4.5.1 	RESIDENT SDOS

The portion of SDOS which is resident in master memory includes the JOB
DISPATCHER, the SVC PROCESSOR, all of the peripheral DEVICE HANDLERS, and four
SDOS commands.

The JOB DISPATCHER performs all the conrand line interpretation and schedules
all pending jobs. THe SVC PROCESSOR handles any Supervisor Calls (SVCs) that
are made by system and user programs. SVCs are described in detail in the
System Reference Manual. The DEVICE HANDLERS are the programs which interface
directly with the system hardware to perform I/O functions. The four SDOS
commands that are resident are: GO, LOAD, SYSTEM and XEQ.

4.5.2 	SDOS OVERLAYS

The SDOS overlays consist of all SDOS commands except the four memory-resident
commands and the Editor and Assembler which run using the slave memory.

Master memory contains two overlay areas into which the SDOS overlays are loaded
and executed. The overlay areas are referred to as Overlay Area 1 and
Overlay Area 2. Some SDOS overlays are executed in Overlay Area 1, some are
executed'in Overlay area 2, and some occupy both overlay areas during
execution.

The SDOS commands are categorized in the following list by the overlay area in
which they are executed:

OVERLAY AREA 1
	

OVERLAY AREA 2 	OVERLAY AREA 1 & 2

COPY RHEX 	ABORT PATCH 	LDIR
DEBUG RSMS 	ASSIGN RENAME 	MODULE
DUP VERIFY BKPT RESET
FORMAT WEEK 	CLBP 	DSTAT
PRINT WSMS 	CLOSE SET
RPROM WPROM 	CONT SLAVE
CPROM 	KILL 	SUSPEND

DELETE TRACE
DEVICE TYPE
DUMP 	STATUS
EXAM

14-27

SDOS commands can be executed concurrently as long as they do not occupy the
same overlay area. In addition, the concurrent execution must be consistent
with the current state of the peripheral devices and must not cause any system
conflicts.

For example, suppose a paper tape was being read into slave memory. This
would be accomplished using the RHEX command:

>R

While the tape is being processed, file maintenance could be performed.
Pressing the ESCAPE key would suspend RHEX execution and display the SDOS
prompt character, ». The DELETE command could then be entered:

»DEL FTIF1/1 DATA1/1 SOURCE/1 0

When the ®r 	entered, the RHEX command would be continued and the DEL command
started. Note that RHEX executes in overlay area 1, while DELETE operates in
overlay area 2, which allows the concurrent execution of these programs.

14.6 	COMMAND FILES

SDOS provide the user with the capability of executing a sequence of SDOS
carrnands by issuing a single comnand. This capability is implemented through
the use of COMMAND FILES. A COMMAND FILE consists of a sequence of SDOS
°onland lires. When the name of the COMMAND FILE (we shall assign the name
COM1) is used as an SDOS command:

>comi Qr
SDOS first determines that COM1 is not one of the basic SDOS commands. SDOS
then searches the system directory for the file COM1. When SDOS locates COM1,
it treats the first line in COM1 as an SDOS command and executes it. Then the
second line is executed, and so forth, until an end-of-file condition is
reached on COM1.

For example, suppose the Editor was used to create the following file nameel
LISTALL:

LDIR 0 LPT1
LDIR 1 LPT1
LDIR 2 LPT1
LDIR 3 LPT1

If LISTALL is entered as an SDOS connend, SDOS will locate LISTALL and execute
the first line as an SDOS command. This will result in the directory of the
diskette on drive 0 being printed on the line printer. Execution of the next
three lines will result in the directories of the diskettes on drives 1, 2
and 3 being printed on the line printer.

SDOS also allows for parameters to be entered in the °omrand line with the
CCIMAOFILE filename. This is accomplished by allowing parameters following
the COMMAND FILE filename to replace parameters beginring with a $ in the
COMMAND FILE file. For example, if LISTALL was changed to:

LDIR 0 LPT1 $1 $2
LDIR 1 LPT1 $1 $2
LDIR 2 LPT1 $1 $2
LDIR 3 LPT1 $1 $2

and the coma and

>LISTALL . /

was entered the '.' (the first parameter) would replace all the $1s in the
LISTALL file and the '/' (the second parameter) would replace all the $2s in
the LISTALL file. This would result in the following conmand stream being
perfbrmed:

LDIR 0 LPT1 . /
LDIR 1 LPT1 . /
LDIR 2 LPT1 . /
LDIR 3 LPT1 . /

If the command:

> LISTALL /

were executed, the '/' would replace all the $1s in the LISTALL file,
resulting in this ccemand stream:

LDIR 0 LPT1 /
LDIR 1 LPT1 /
LDIR 2 LPT1 /
LDIR 3 LPT1 /

Note that if a required parameter represented by a $n is omitted when invoking
the COMMAND FTEE, an error may occur.

1-29

In general, if COM is a COMMAND FTLE and has $1, $2, $3, 	$n as parameters
in the file, performing:

COM X1 X2 X3 	Xi

will result in:

X1 replacing the $1s in the COM file
X2 replacing the $2s in the COM file
X3 replacing the $3s in the COM file

Xi replacing the $ns in the COM file

If a device read error is encountered in a COMMAND FILE, the entire file
execution will be aborted, except when the value of the KILL switch is OFF. (See
Section 4.6.1)

COMMAND FILES cannot be nested, but they can be chained. That is, if the last
SDOS ccmmand in a CCMMAND FILE is the name of another CCEMAND FILE, the COMMAND
FILE in progress will be terminated and the next COMMAND FILE will be started.
Parameters can be passed from one CCMMAND FILE to another in the same way they
are passed to SDOS commands.

A maximum of six disk files instead of the normai eight can be assigned to a
slave program while a CC?IMAND FTTE is in progress.

4.6.1 	COMMAND FILE UTILITTRS

The user may control actions taken during command file execution with these
comands:

KILL
TYPE

KILL ON
or
JOILL QEF

This command causes the SDOS switch KILL to be set ON or OFF.

If the KILL switch is ON, a COMMAND FILE will be aborted if the current SDOS
command being executed by the COMMAND FILE processor encounters an error. If
the KILL switch is OFF, the COMMAND FTTF processor will continue with the next
SDOS command in the file.

The default value of the KILL switch is ON.

KIL ERROR RESPONSES

30 - INVALID PARAMETER
31 - PARAMETER REQUIRED

TYPE al
or
nTE OFF

This command causes the SDOS switch TYPE to be set ON or OFF.

If the TYPE switch is ON, SDOS command lines executed by the COMMAND FTLE
processor will be output to the system console. If the TYPE switch is OFF,
SDOS command lines or 'EOJ' messages will not be displayed on the console.
Error messages from SDOS programs are displayed regardless of the TYPE setting.

The default value of the TYPE switch is ON.

TYP ERROR RESPONSES

30 - INVALID PARAMETER
31 - PARAMETER REQUIRED

* CalMENT

This command is used to insert comments into the job flow. The * must be
followed by a space or a carriage return. The ASCII string which follows the
space cannot be longer than 77 characters. This command is effectively
ignored by SDOS.

The primary use of the * command is in COMMAND FILES where it can be used to
display comments around SDOS commands.

4.7 	SDOS ERROR MESSAGES

All SDOS error messages are of the following foren:

* id * ERROR #

where id is the SDOS system program identifier, Table 4-3, and error # is the
SDOS error nunber, Table 4-2. For example,

WHX ERROR 30

is issued by the program WHEX, indicated by the SDOS program identifier,
WHX, and informs the operator that an invalid parameter was received,
indimted by the SDOS error nunber, 30.

TABLE 4-2
SDOS ERROR MESSAGES

1 - DIRECIORY READ ERROR
2 - DIRECTORY WRITE ERROR
3 - COMMAND FILE NOT FOUND
4 - COMMAND FTLE INPUT ERROR
5 - PROCEDURE BUSY
6 - DEVICE READ ERROR
7 - DEVICE WRITE ERROR OR END-OF-DEVICE
8 - DRIVE NOT SPECIFIKD
9 - INVALID DRIVE
10 - OVERLAY LOAD FAILURE
11 - OVERLAY AREA IN USE
12 - INVALID FTLE NAME
13 - INPUT FTLF, NOT FOUND
14 - INVALID INPUT DEVICE
15 - INVALID OUTPUT DEVICE
16 - INPUT DEVICE ASSIGN FAILURE
17 - OUTPUT DEVICE ASSIGN FAILURE
18 - DEVICE IN USE
19 - INVALID CHANNEL NUMBER
20 - CHANNEL IN USE
21 - CHANNEL ASSIGN FAILURE
22 - COMMAND LINE BUFFER OVERFLOW
23 - INVALID COMMAND
24 - JOB NOT ACTIVE
25 - JOB NOT SUSPENDED
26 - JOB ALREADY SUSPENDED
27 - JOB EXECUTING
28 - JOB UNDER DEBUG CONTROL
29 - PROM POWER FAILURE
30 - INVALID PARAMETER
31 - PARAMETER REQUIRED
32 - TOO MANY PARAMETERS
33 - BIAS PARAMETER ERROR
34 - INVALID ADDRESS
35 - INVALID START ADDRESS
36 - INVALID END ADDRESS
37 - INVALID GO ADDRESS
38 - INVALID DEBUG SLAVE PROGRAM ADDRESS
39 - INVALID HEX CHARACTER
40 - INVALID RHEX INPUT FORMAT

4-33

41 - INVALID BREAKPOINT ACCESS MODE
42 - INVALID REGISTER PARAMETER
43 - INVALID DATA PARAMETER
44 - INVALID TRACE MODE PARAMETER
45 - INVALID SLAVE SRB ADDRESS
46 - SLAVE HAL1ED
47 - SYSTEM AREA BAD
48 - LOADFTTNOTFDUND
49 - LOAD FILE ASSIGN FAILURE
50 - FTLE NOT A LOAD MODULE
51 - INVALID LOAD REQUEST
52 - INVALID DEVICE
53 - INVALID SLAVE CPU
54 - INVALID MODE
55 - INVALID MEMORY
56 - INVALID DEVICE ADDRESS
57 - FILE NAME IN USE
58 - DEVICE ASSIGN FAILURE
59 - MEMORY WRITE ERROR
60 - END OF MEDIA
61 - FILE IN USE
62 - DEVICE NOT OPERATIONAL
63 - DIRECTORY FULL
64 - INVALID FILE NAME
65 - INVALID DISKETTE
66 - MASTER MEMORY PARITY ERROR
67 - SLAVE MEMORY PARITY ERROR

4-34

TABLE /4-3

SDOS SYSTEM PROGRAM IDENTIFIERS

ABT 	ABORT OVERLAY
ASN 	ASSIGN OVERLAY
*CLSM 	CLOSE OVERLAY
CON 	LONT OVERLAY
COP 	COPY OVERLAY
DEE 	DEBUG OVERLAY
DEL 	DELETE OVERLAY
DEV 	DEVICE OVERLAY
DIR 	LDIR OVERLAY
DMP 	DUMP OVERLAY
DOS 	SDOS RESIDENT PROGRAM
DUP 	DUP OVERLAY
EXM 	EXAM OVERLAY
FMg 	FOKMAT OVERLAY
KIL 	KILL OVERLAY
MOD 	MODULE OVERLAY
PAT 	PATCH OVERLAY
PRM 	PROM OVERLAY
PRN 	PRINT OVERLAY
REN 	RENAME OVERLAY
Ra 	RH EX OVERLAY
SCH 	SEARCH OVERLAY
SLJ 	PROGRAM RUNNING UNDER SLAVE CPU
SLV 	SLAVE OVERLAY
*SMEM 	SMS OVERLAY
SUS 	SUSPEND OVERLAY
TYP 	TYPE OVERLAY
VER 	VERIFY OVERLAY
WHX 	WEEX OVERLAY

CHAPTER 5

THE TEXT EDITOR

5.0 	INTRODUCTION

The major function of the TWIN Text Editor is to create new source programs or
to change existing source programs. The Text Editor is also used for the
creation and modification of COMMAND FILES. The Editor performs these
functions by processing command lines entered by the user. Each comand line
specifies one action or a series of actions for the Editor to undertake,e.g.,
entering new source lines or searching the file for a specified string.

The Editor will be discussed by examining the SDOS command EDIT, presenting a
sample edit, detailing all the Editor commands, and listing all the messages
which the Editor may display to the operator.

The Editor resides in slave memory and occupies approximately seven thousand
bytes of the memory. The reminder of the slave memory is available for the
text that is being worked on. This is approximately 150 60-character lines in
a 16K system.

Throughout this discussion, there are two terras and a keyboard input convention
which are used. These are:

Buffer: 	The buffer is the slave memory area that contains the text that
the Editor operates on. Data is written into and read from the
buffer by the Editor. The buffer can be seen as having a top
(or first) line and a bottom (or last) line. The Editor can
operate on any line in the buffer. In this chapter, the terras
workspace and buffer are used interchangeably.

Line Pointer:Data in the buffer is edited by examining, changing, insertimg
and replacing lines. The Editor keeps track of which line the
operator is werking on by keeping a pointer at the current line.

e 	This symbol will indicate the RETURN key.

If you are familiar with Frgtors, the section on
the detnfled description of the commands, Section
Section 5.4, will be most helpful.

If you are not familiar with Editors, Section
edit session, will be helpful in illustrating the

the EDIT command, Section 5.1,
5.3, and the Editor messages,

5.2, which describes a typim1
use of the Editor commands.

5-1

5.1 	THE EDIT COMMAND

You may start the Editor by utilizing the SDOS EDIT command. This command has
three forms:

1) EDIT INFILENAME OUTFILENAME
2) EDIT FILENAME
3) EDIT

If form 1 is used, INFILENAME designates the PRIMARY INPUT file and OUTFILENAME
designates the PRIMARY OUTPUT file. The PRIMARY INPUT file will be the
default file in any Editor command that asks for data from the disk. The
PRIMARY OUTPUT file will be the default file in any Editor command that writes
data to the disk. If INFILENAME is the same as OUTFILENAME, the file will
will be edited to itself. This is accomplished by automatically creating a
temporary work file to be used as OUTFILENAME. When you finish your edit
session, INFILENAME is deleted, and then the temporary work file is renamed
INKIIIIMME. For example, if:

EurrivaA1 DATA1 ®

was performed, DATA1 would be the input file, and *ATA1 would be the output
file. After you complete your edit session, DATA1 would be deleted, then
*ATA1 would be renamed DATA1. In the event of disk read or write errors
during the edit session, both the DATA1 and *ATA1 files will remain available
to you.

If form 2 is used, the interpretation is based on whether FILENAME is a new
file or an existing file. If FILENAME is an existing file, FILENAME is edited
to itself as in the previous example of EDIT DATA1 DATA1. If FILENAME is a
new file, then FILENAME designates the PRIMARY OUTPUT file, and there is no
PRIMARY INPUT file. Since there is no PRIMARY INPUT file, you may not input
from the default file, so an ALTERNATE INPUT file must be specified.

If form 3 is used, there is no PRIMARY INPUT file and no PRIMARY OUTPUT file.
If you desire to input or output data, ALTERNATE INPUT or ALTERNATE OUTPUT files
must be specified in the command.

In all cases, the Editor will respond with an identifying message and then
present its prompt character, *, to indicate it is ready for commands.

You may not start the Editor while a COMMAND FTLE is active under SDOS. The
EDIT request will be rejected if an attempt is made to do so.

NOTE: While the Editor is executing, the special SDOS keys, ESC and SPACE BAR,
retain their special fUnctions. Consult Section 4.2 for an explanation
of their use.

5.2 	EDIT EXAMPLE

Let us go through an example of editing. Suppose you have conceived and coded
the 2650 program in Figure 5-1 and wish to create a new file, DADDSB, which
will contain the source program data. Start the Editor program by typing:

>EDIT DADDSB/0 ®

This will load Editor into slave memory and begin execution. The Editor will
display:

** EDIT VER X.Y **
** NEW FILE **
*

The * is the Text Editor prompt character, which indicates that the Editor is
ready to accept commando. Figures 5-2 through 5-7 are hard copy equivalents of
the Edit sessions that will be described.

* DOUBLE PRECISION ADD, A IN RO, R1. B IN R2,R3
* ON RETURN, A+B IS IN R2,R3
*

DADD STRR,R1 DAR1
ADDR,R3 	DAR1
PPSL 	WC
ADDZ 	R2
STRZ 	R2
CPSL 	WC
RETC,UN

DAR1 RES 1
*

FIGURE 5-1
A SAMPLE SOURCE PROGRAM

The first command entered, line 1 of Figure 5-2, is the TAB command (The Set TAB
Character Ccurrand). The command, TAB ., sets '.' as the TAB character. This
gives the '.' a special meaning, which is that hen '.' is entered, the Editor
is rep!~ to fill the buffer with spaces until the next TAB stop. This
feature will be discussed later.

The Editor has two basic modes. These are an EDIT mode, where you may perform
any of the editing functions, and an INPUT mode, where you may only enter
source text.

1f you desire to enter more than one or two lines of data, it is desirable to
enter the input mode. Since you desire to enter all of the source program at
one time, the input mode should be entered. To enter the input mode, press I
and then RETURN (line 2 of Figure 5-2). The Editor acknowledges this command
by displaying INPUT: to remind you of its mode (line 3 of Figure 5-2). You
may be then enter the source program (lines 4-14 of Figure 5-2). As can be
seen, errors have occurred (lines 9 and 13 of Figure 5-2). To change from the
input mode back to the edit mode, enter a null line by pressing RETURN twice
in succession (line 15 of Figure 5-2).

The effect of entering the TAB character can be seen by examining lines 9 and
23 in the display of the buffer (see Figure 5-2). Entering '.' at the start of
line 9 resulted in spaces being entered up to the first TAB stop, which is
in column 8. Entering the second '.' as the sixth character in line 9
resulted in spaces being entered up to the next TAB stop, which is located in
column 16. The user may change either the TAB character or TAB stops by using
the TAB and TABS comands. The default TAB character is CTRL-I and the default
TAB stops are 8, 16, 24, 32, 40, 48, 56, and 64.

To view the text that has been entered, it is necessary to move the line pointer
to the top line of the buffer. This is accomplished by entering B, the Move
Pointer to Beginning of Buffer command (line 16 of Figure 5-2). On line 17 of
Figure 5-2, the command to display 55 lines of the buffer is entered (55 is an
arbitrarily large number which will allow the entire buffer to be displayed).
The Editor displays the buffer (lines 18 - 28 of Figure 5-2) and then displays
** EOF ** to indicate it has reached the bottom of the buffer. Note that the
tabs entered in the input mode are present as spaces in the buffer.

Upon examination of Figure 5-2, it is clear that two changes are necessary to
the text currently residing in the buffer. Line 23 should have WD altered to
WC and line 27 should have RETDMYNN altered to RETC,UN.

To find these lines, type F (the FIND command), a space, then WD, where the
data between the $s is the data you wish to find (line 1 of Figure 5-3). In
this case, the $ is the delimiting character, which means that the $s telt the
Editor where the data starts and where the data ends. The Editor finds the

1 *TAB .
2 *I
3 INPUT:
4 * DOUBLE PRECISION ADD. A IN RO,R1. B IN R2,R3
5 * ON RETURN, A+B IS IN R2,R3
6 *
7 DADD.STRR,R1.DAR1
8 .ADDR.R3.DAR1
9 .PPSL.WD
10 .ADDZ.R2
11 .1EZ.R2
12 .CPSL.WC
13 .RETDMYNN
14 DAR1.RES.1
15
16 * B
17 * TY 55
18 * DOUBLE PRECISION ADD. A IN RO,R1. B IN R2,R3
19 * ON RETURN, A+B IS IN R2,R3
20 *
21 DADD STER,R1 DAR1
22 	ADDR,R3 DAR1
23 	PPSL WD
24 ADDZ R2
25 STRZ R2
26 	CPSL WC
27 	RETDMYNN
28 DAR1 RES 	1
29 ** EOF **

FIGURE 5-2

ENTERING TEXT AND DISPLAYING THE BUFFER

first line in the buffer that contains WD, moves the line pointer to the
beginning of the line, and displays the line (line 2 of Figure 5-3). To alter
the WD to WC, enter S (the SIWPIIIITE command), a space, then WDWC$ (line 3
of Figure 5-3). The first $ says this is the start of the string to be
deleted. WD is the string to be deleted. The second $ is the end of the
string to be deleted, and the beginning of the string to substitute for the
deleted string. The final $ indicates the end of the string to substitute.

The Editor performs the substitution and displays the line as altered (line 4 of
Figure 5-3). To change RETDMYNN to RETC,UN, find the line by entering F
(FIND), space, then RET to locate this string (line 5 of Figure 5-3). The
Editor prints the line on which it locates RET (line 6 of Figure 5-3). In this
case, you want to replace the line with the correct information. This is done
by pressing R (the REPLACE command), space, and then entering the information
desired, namely 	RETC,UN (line 7 of Figure 5-3). This command replaces the
current line with the line following the R, space. The Editor displays the
replacement line after it has performed the replace function (line 8 of Figure
5-3).

1 *F WD
2 PPSL WD
3 *S WDWC$
4 PPSL WC
5 *F RET
6 	RETDMYNN
7 *R .RETC,UN
8 	RETC,UN

FIGURE 5-3
FIND, SUBSTITUTE AND REPLACE COMMANDS

To insure that the changes were performed correctly, go to the top of the
buffer and display its contents (see Figure 5-4).

Since you are satisfied that the buffer contains the correct information, you
want to store the information on the disk. This is accomplished using the FILE
command (line 15 of Figure 5-4), which writes the contents of the buffer to the
PRIMARY OUTPUT file and then transfers the rest of the PRIMARY INPUT file, if
one exists, to the PRIMARY OUTPUT file. Following the final transfer, the
Friitor is exited and SDOS displays its prompt character. In this esse, the buf-
fer will be copied to disk file DADDSB/O. There is no input file, so DADDSB/O
will be closed, the Editor will be exited (line 16 of Figure 5-4) and SDOS will
display its prompt character (line 18 of Figure 5-4).

5-6

1 *B
2 *TY 55
3 * DOUBLE PRECISION ADD. A IN RO,R1. B IN R2,R3
4 * ON RETURN, A+B IS IN R2,R3
5
6 DADD STRR,R1 DAR1

	

7 	ADDR,R3 DAR1

	

8 	PPSL WC

	

9 	ALK R2

	

10 	STRZ R2

	

11 	CPSL WC

	

12 	RETC,UN
13 DAR1 RES 1
14 ** EOF **

	

15 	*FTT .F,

	

16 	*ST .1** E0J.
17

	

18 	>

FIGURE 5-4

DISPLAYING THE BUFFER AND FILING

Suppose you wished to expand DADDSB/O to include not only a double precision
add, but a double precision subtract, as in Figure 5-5.

* DOUBLE PRECISION ADD. A IN RO,R1. B IN R2,R3
* ON RETURN, A+B IS IN R2,R3
*

DADD 	STRR,R1 DAR1
ADDR,R3 DAR1
PPSL WC
ADDZ 	R2
STRZ 	R2
CPSL WC
RETC,UN

DAR1 	RES 	1
* DOUBLE PRECISION SUBTRACT, A IN R2,R3. B IN RO,R1
* ON RETURN, A-B IS IN R2,R3
*

DSUB 	STRR,R0 DSRO
STRR,R1 DSR1
SUBR,R3 DSR1
PPSL WC
SUBR,R2 DSRO
CPSL WC
RETC,UN

DSRO RES 1
DSR1 	RES 	1

END 	DADD

FIGURE 5-5

DOUBLE PRECISION ADD AND SUBTRACT

To edit the additional information into the file DDSB/O, do the following tasks.

Start the Editor by entering:

>EDIT DADDSB/O 0

While this command is identical to the command entered Parlier, it now has a
different interpretation. In the first example, DADDSB/O was a new file.

5-8

When a new filename is the sole argument to an EDIT command, the file is treated
as the PRIMARY OUTPUT file and there is no PRIMARY INPUT file. This is as it
should be, since if you are in the process of creating a new file which will
contain unique information, there is no need for a PRIMARY INPUT file. In
this case, DADDSB/0 is an existing file which contains the double precision
addition routine, so this EDIT command requests that DADDSB/0 be edited to
itself.

When the Editor displays its prompt character, *, you can proceed. Since the
new text is to be appended to the existing text in DADDSB, you must read the
existing file into the buffer. This is accomplished by entering G (the GET
oanmand), space, and then 20, an arbitrarily large number that will result in
DADDSB/0, which we know to be aproximately 10 lines long, being read into the
buffer. (See line 1 of Figure 5-6). The Editor reads the PRIMARY INPUT file,
which is the default filename in the GET camand, until it inputs the specified
nutter of lines or until it reaches the end of file. In this case, the end of
file is reached first, so the message ** EOF ** is displayed (line 2 of Figure
5-6).

Where was the data inserted in the buffer? The answer is that the data was
inserted above the line pointer as in the INPUT mode example. To view the
buffer, move the pointer to the beginning of the buffer (line 3 of Figure 5-6).
Display the buffer by entering TY 55 (line 4 of Figure 5-6). This command
displays the buffer and prints ** EOF ** to indicate the bottom of the buffer
(lines 5-16 of Figure 5-6). Note that ** EOF ** has two ases, one to indicate
the end of the buffer and one to indicate the end of the file.

To enter the double precision subtract routine after the add routine, you must
go to the bottom of the buffer to perform the insertion. Do this by entering
END. This command moves the line pointer to a location below the last line of
text (lines 17 - 18 of Figure 5-6). The TAB character is specified as a '.' in
line 19. Enter the input mode by entering I (line 20 of Figure 5-6). Enter the
source data (lines 22 - 35 of Figure 5-6). The effect of the TAB character can
be seen in lines 52 to 61 of Figure 5-6, when the entire buffer is displayed by
the commands on lines 36 and 37.

Suppose you desired to make the source listing a little more readable. For
example, suppose you want to add an '*' line between lines 48 and 49 and
between lines 58 and 59 of Figure 5-6. To do these tasks, you must first
position the line pointer to point to the line that begins with * DOUBLE

5-9

1 *GET 20
2 ** EOF **
3 *B
4 *TY 55
5 * DOUBLE PRECISION ADD. A IN R0,R1. B IN R2,R3
6 * ON RETURN, A+B IS IN R2,R3
7*
8 DADD SfRR,R1 DAR1
9 	ADDR,R3 DAR1
10 	PPSL WC
11 ADDZ R2
12 Site R2
13 	CPSL WC
14 	RETC,UN
15 DAR1 RES 	1
16 ** EOF **
17 *END
18 ** EOF **
19 *TAB .
20 *1
21 INPUT:
22 * DOUBLE PRECISION SUBTRACT. A IN R2,R3. B IN RO,R1
23 * ON RETURN< A-B IS IN R2,R3
24 *
25 DSUB.STRR,RO.DSRO
26 .STRR,R1.DSR1
27 .SUBR,R3.DSR1
28 .PPSL.WC
29 .SUBR,R2.DSRO
30 .CPSI.WC
31 .RETC,UN
32 DSRO.RES.1
33 DSR1.RES.1
34 .END.DADD
35
36 *B
37 *TY 25
38 * DOUBLE PRECISION ADD. A IN R0,R1. B IN R2,R3
39 * ON RETURN, A+B IS IN R2,R3
40
41 DADD STRR,R1 DAR1
42 	ADDR,R3 DAR1

FIGURE 5-6

ADDING DATA TO AN EXLSTING FTT

5-10

43 	PPSL 	WC
44 	ADDZ 	R2
45 	STRZ 	R2
46 CPSL WC
47 	RETC,UN
48 DAR1 RES 	1
49 * DOUBLE PRECISION SUBTRACT. A IN R2,R3. B IN RO,R1
50 * ON RETURN, A-B IS IN R2,R3
51 *
52 DSUB blER,R0 DSRO
53 	STRR,R1 DSR1
54 	SUBR,R3 DSR1
55 PPSL WC
56 	SUBR,R2 DSRO
57 CPSL WC
58 	RETC,UN
59 DSRO RES 	1
60 DSR1 RES 	1
61 	END 	DADD
62 **EOF**

FIGURE 5-6

ADDING DATA TO AN EXISTING FILE

(CCNTINUED)

PRECISION SUBTRACT. This can be accomplished by moving the line pointer down
the buffer. Enter D (the Move Line Pointer Down the Buffer Command), space,
10 (line 1 of the Figure 5-7). This moves the line pointer 10 lines down.
The Editor displays the line that the line pointer now points to in line 2 of
Figure 5-7. The '*' line is desired between the DAR1 RES 1 lines and the *
DOUBLE PRECISION SUBTRACT line. The INSERT command inserts the line specified
above the current line. Therefore, go down the buffer one more line. This is
accomplished by entering D, Q) , since the default value for the number of
lines to move is 1 (line 3 of Figure 5-7). To enter the * line, enter I (the
INSERT line canmand unless I is immediately followed by a RETURN, in which
case the user enters the INPUT mode), space, * , Q) (line 5 of Figure 5-7).
To enter the second '*' line between the two temporary variables, DSRO and DSR1,
and the subtract routine, go to the bottom of the buffer. This is accomplished
by entering END (line 6 of Figure 5-7). The Editor indicates the line
pointer's position at the bottom of the buffer by displaying ** EOF ** (line 7
of Figure 5-7). Move the pointer up the buffer to the line where you wish to
enter the * by entering U (the Move Line Pointer UP the buffer command), space,
3 ® , (line 8 of Figure 5-7). This command moves the line pointer up three
lines and displays the line (line 9 of Figure 5-7). To enter the '*' line,
enter I (INSEi'r), space, * ,or3 (line 10 of Figure 5-7).

After displaying the buffer (lines 11 - 39 of Figure 5-7) and insuring that
the text you desire is present, the data may be stored on file DADDSB/0 by the
use of the command FILE (line 40 of Figure 5-7). The contents of the buffer
are written to the PRIMARY OUTPUT file, *ADDSB/O. The remeinder of the PRIMARY
INPUT file, DADDSB/0, is copied to the PRIMARY OUTPUT file. Since all the data
has been read from the PRIMARY INPUT file (lines 1-2 of Figure 5-6, **E0F**),
no additional data is written to the PRIMARY OUTPUT file. The file DADDSB/0
is deleted. *ADDSB/O is renamed DADDSB/0. The Editor is exited and SDOS
displays its prompt character.

5.3 	EDITOR CCMMAND DESCRIPTIONS

This section provides detailed descriptions of all the Text Editor comands.
As a prelude to these descriptions, the Editor command line, the conventions
and term used in the descriptions, and certain limitations will be described.

5.3.1 	EDITOR COMMAND LINE

When the Editor presents its prompt character, * , it is ready to accept

1 *D 10
2 DAR1 	RES 	1
3 *D
4 * DOUBLE PRECISION SUBTRACT. A IN R2,R3. B IN RO,R1
5 *I *
6 *END
7 ** EOF **
8 *U 3
9 DSRO 	RES 	1
10 *I *
11 *B
12 *TY 55
13 * DOUBLE PRECISION ADD. A IN RO,R1. B IN R2,R3
14 * ON RETURN, A+B IS IN R2,R3
15 *
16 DADD 	STRR,R1 DAR1
17 	ADDR,R3 DAR1
18 	PPSL WC
19 	ADDZ R2
20 	STRZ R2
21 	CPSL WC
22 	RETC,UN
23 DAR1 	RES 	1
24 *
25 * DOUBLE PRECISION SUBTRACT. A IN R2,R3. B IN RO,R1
26 * ON RETURN, A-B IS IN R2,R3
27 *
28 DSUB 	STRR,RO DSRO
29 	STRR,R1 DSR1
30 	SUBR,R3 DSR1
31 	PPSL WC
32 	SUBR,R2 DSRO
33 	CPSL WC
34 	RETC,UN
35 *
36 DSRO 	RES 	1
37 DSR1 	RES 	1
38 	END 	DADD
39 ** EOF **
40 *FILE
41 *ST.)* E0J
42
43 >

FIGURE 5-7

INSERTING LINES INTO THE BUFFER

5-13

ccmmands. All Editor ccemands are of the foren:

command parameterlist

where:

coatend
	

identifies the particular action desired

parameterlist identifies necessary variables for the command. The
parameter list may be null.

There must be a space between command and parameters with one exception,
described in Section 5.3.2.

A command line consists of one or more commands terminated by RETURN. If you
desire to specify two or more commands in one command line, the commands must
be separated by the coatend delimiter (:).

For example:

* F $BADL1NES$: K 1 e

would find the next line in the buffer with the string BADLINE in it and then
delete that line.

A command line may not exceed 128 characters. If the line does exceed 128
characters, **TRUNCATED** will be displayed on the console and the entire
command line will be rejected.

5.3.2 EDITOR COMMAND DESCRIPTION CONVENTIONS

There are several conventions employed in the description of the Editor
commands, and two features of the Editor that require explanation.

Conventions used in the command descriptions are:

a) The symbol N refers to two possible entries. These are an absolute number
(n) or a line range (p-q). For example, KIL N refers to two possible types
of command line, KILL n or KILL p-q. Thus, you could KILL the next n
lines or KILL lines p through q (inclusive) in the buffer. N assumes a
default of n=1 if N is omitted, with the exception of the COPY ccemand and,
when an alternate file is specified, the GET and PUT commands. In these
cases, N must be specified. In addition, N may be directly appended to
the ccmmend when it is used. For example, KILL N may be written as Kn or
Kp -q. The arguments n,p and q must be integers in the range 1 to 32,767,
inclusive.

5-114

In the "p-q" form, the letters B, E, and C may be used, where
applicable, to refer to the ~ming, Ehding, and Current lines in
the workspace. If used, these letters may not be directly appended
to the ccenand. A space after the ccemand is required.

b) The Editor maintains a line pointer to the line in the buffer that it
is currently considering. The line is known as the current lin
The line pointer will be designated in this discussion as:

For example, the buffer appears as follows:

ADDR,R2 	TEMP
5IBR,R2 	TEMP2
ADDI,R2 	ERR1

c) The '$' character is used to represent the delimiting character for
a string of text. The delimiter cannot be a space and cannot appear
in the string being delimited. '$' was used in the Edit example, and
its use was discussed on pages 5-4 and 5-6.

d) The minimum characters required to initiate the command are
underlined.

e) Parameters that are optional for a command are enclosed in
parentheses.

The twe features of the TWIN Editor are:

1) The Editor will type the line pointed to by the line pointer at the
ccepletion of most commands. This feature keeps the user apprised
of his position in the buffer. For a complete discussion of how to
manipulate this feature, consult the BRTFF command.

2) The. Editor has three special commands delimiters, : (which allows
the user to stack commands on a command line), <, and > (which
execute a command line repetitively, see 5.3.9). To enter these
characters into the buffer, theymust be entered while in the INPUT
mode or when a / prefix is used. (See Section 5.3.2 for INPUT,
Section 5.3.9 for 1).

5-15

5.3.3 	INSERTION

The user may insert source lines into the buffer by the use of the commands
INSEn and INPUT.

INSERT string

This command will insert the line string before the current line in the buffer.
This allows the user to enter single lines into the buffer. The position of
the line pointer is not changed.

For example, if the buffer appears as follaws:

ADDR,RO DAR2

	

LP 	ADDR,R1 DAR3

and the command

*INSERT SfER,R0 DAR5

was performed, the buffer would be altered to

ADDR,RO DAR2
STRR,RO DAR5

	

0 	ADDR,R1 DAR3

If the user enters a null string, by depressing (I) after the single delimiting
space, the editor will enter the INPUT mode, which is described below.

INPUT

The editor may be placed in the INPUT mode by entering:

INPUT 0

The editor will respond with

INPUT:

to indicate that it has entered the input mode.

In the INPUT mode, the user may enter any number of lines. These lines will be
entered into the buffer before the current line. The INPUT mode is terminated
by entering a null line. The position of the line pointer is not changed.
For example, if the buffer appears as follows:

ADDR,RO 	DAR2
LP 	ADDR,R1 	DAR3

and the sequence

*INPUT ®
INPUT:
STRR,RO DAR5 g
ADDR,R2 	DAR4
ADDZ,R2 Or

0

was perfbrmed, the buffer would be altered to

ADDR,R0 	DAR2
STRR,RO 	DAR5
ADDR,R2 	DAR4
ADDZ,R2

LP 	ADDR,R1 	DAR3

In the INPUT mode, no text line may exceed 128 characters. If more than 128
characters are input before RETURN is pressed, **TRUNCATED** will be printed
on the console, and only the first 128 characters entered will be placed in
the buffer.

5.3.4 	DELETION

The user may delete lines in the buffer using the command, KILL.

EILL N

This command has tv) forms, 1) delete the next n lines beginning with current
line, or 2) delete lines p through q in the buffer. If no argument is speci-
fied, the current line is deleted.

For example, if the buffer appears as follows:

$9----.-LINE 1
LINE 2
LINE 3
LINE 4
LINE 5
RETC,UN

and the following =mand is performed

* K 24

the buffer will be changed to

	 LINE 5
RETC,UN

The command K 1-4 could have been used to produce the same effect.

The KILL command moves the line pointer in the following menner:

1) If K n is used, and the line pointer is positioned on line q, the line
pointer is repositioned to point at what was line n+q before the deletion
took place.

In the above example, K 4 is used as the =mand, and the line pointer is
positioned at line 1 in the buffer. Therefore, the line pointer is
repositioned to point at what was the fifth line, LINE 5.

2) If K p-q is used, there are two possible positionings of the line pointer.

a) If the line pointer points at a line between line p and line q, the line
pointer will be repositioned at what was line q + 1.

b) If the line pointer points at a line that is not between line p and line
q, the position of the line pointer is not changed.

5-18

5.3.5 	ALTERATION

The user may alter lines in the buffer through the use of the commands
SUBSTITUTE and REPLACE. Both commands operate on the line pointed to by the
line pointer.

SUBSTITUTE $stringl $string2 $

The SUBSTITUTE command finds the first occurrence of string' in the current
line and replaces string1 with string2

For example, if the current line is

ADDR,R3 	DRSV

the command

S DRDA$

would alter the line to

ADDA,R3 	DRSV

If string1 is not found in the current line, **NOT FCUND** is displayed on the
console.

String2 may contain TAB characters (See Section 5.3.9). Conversion of the
TAB characters to spaces in the buffer depends on the column in which the
substitution occurs. The substitution of spaces for TAB characters is always
in accord with the current TAB positions.

If a substitution causes a- line to exceed 128 characters, the message
MIJNWET will be displayed on the console and the line will be truncated
by truncating characters from the text which is being inserted. For example,
if the current line is the 127 character line

63 A's 	62 C's

LP 	 AA 	AABBCC 	CC

and the command

S BBBBBBB$

is performed, the message **TRUNCATED** will be displayed on the console and
the current line will be altered to the 128 characters

5-19

63 A's 	62 C's
AA 	AABBBCC 	CC

No matter what the result of any substitution, the position of the line pointer
is not changed.

In the example cannauld line, &SOM= DRDA$, the character '$' is used as a
delimiter. The first '$' indicates the beginning of the string to be
substituted for. The second '$' indicates the completion of the first string
and the beginning of the string to substitute. The third and final '$'
indicates the completion of the string to substitute.

Suppose, however, this line appeared in the buffer:

WIMS BY $RIDGE$

if you desire to replace $RIDGE$ with +RIDGE+, you cannot use this command:

S $$RIDGE$$+RIDGE4

stringl string2

Since $ is being used as the delimiter, it may not be inserted in either stringl
or string2.

S 4R1EGE$4R1DGE+/

would alter the line to the desired:

WINES BY +RIDGE+

In this command, the / is used as the delimiting character.

5-20

BEPLACE string

The command REPLACE is used to replace the current line with string. For
example, if the current line is:

	- ADDR,R2 DAR1

the command:

*R STRR,R2 DAR1

will result in the current line being altered to:

SIHR,R2 DAR1

The position of the line pointer is not altered. A blank line is not allowed as
atring. For example:

RC)

is not a valid command.

If the REPLACE command is used in a command line that contains more than one
command, the command delimiting characters : , > , or < will indicate the end of
string. For example:

K4:R GOODBYE:I THEN

would delete the next four lines, then the current line would be replaced by the
line GOODBYE. The INSERT command would then be executed.

5.3.6 	SEARCH

The user may search the buffer for a specified string using the command FIND.

FIND $string$

This command searches the buffer, storting at the current line, for the first
line that contains string. If string is found, the line pointer is reposi-
tioned to point to the line in which string occurs. If string is not found
the massage *NOT FOUND* is displayed, and the line pointer is left unchanged.

If the buffer appears as follows:

LINE 1
LINE 2
LINE 3
LINE 4
LINE 5

and the command:

F4

is executed, the line pointer will be moved to this position:

LINE 1
LINE 2
LINE 3
LINE 4
LINE 5

In the sample command F 4, the $ is used as a delimiting character. The
first $ indicates the beginning of the string to be found; the second $
indicates the end of the string to be found.

Note that the command

F 1

will display *NOT FOUND* on the console since the specified string is in a
line above the line pointer.

If the FIND command is invoked by use of the AGAIN command (see section 5.3.8),
the search starts at the current line plus one.

5.3.7 I/O

The user may bring information into or send information out of the buffer using
the commands GET, PUT, and LIST. The user may move data between files using the
COPY command.

Before discussing the I/O comands, there are two concepts that require explain-
ation.

1) The Editor maintains 'pointers' into the PRIMARY INPUT and OUTPUT files.
These pointers indicate the position of the next line to be read from the
PRIMARY INPUT file (the PI pointer) and the position of the next line to be
written in the PRIMARY OUTPUT file (the PO pointer). Initially, both

LP 	

5-22

pointers point to the first line in the respective files.

The PI pointer will only be affected by GET corrmands that use the default
filename option. The PO pointer will only be affected by PUT or COPY
commands that use the default filename option.

2) When a file is closed, the file is only affected if it was being written.
The SDOS buffer containing the file data is written to the file. An
end-of-file mark which is a CTRL-Z, is written to the file. The end-of-
file mark is used by SDOS to determine the logical end on a file. There-
fore, any data that existed after the end-of-file mark is no longer
considered part of the file. Note that problems will arise if a data file
is mistakenly end -filed in the middle of the data file, as all data
following the end-of-file mark will be lost.

GET N (FILENAME)

This command reads N lines of data into the buffer. FILENAME specifies the
file that will be accessed to provide the data. If FILENAME is omitted, data
will be input from the PRIMARY INPUT file. The data that is input is inserted
above the current line pointer. The position of the line pointer is not
changed.

For example, if the buffer appears as follows:

PPSL WC
LP 	 RETC,UN

DAR1 RES 	1

and file A contains the five lines

ADDZ 	R2
STRZ 	R2
CPSL WC
RETC,UN

LAB 	RES 	1

performing the command:

GET 1-3 A

will cause the buffer to be altered to:

PPSL
ADDZ 	R2
STRZ 	R2
CPSL WC

	- RETC,UN
DAR1 RES 	1

Other features of the GET command include:

1) If the user specifies the PRIMARY INPUT file as FELDUNE the pointer into
the PRIMARY INPUT file will not be altered. For example, if 6 lines have
been read from the PRIMARY INPUT file, ASYM, with a GET 6 command, a

GET 2

command would read the 7th and 8th lines and move the PI pointer to the
ninth line. If, however, the command was not GET 2 but:

GET 2 ASYM

the 1st and 2nd lines would be read into the buffer. The GET 2 ASYM
=mand would not affect the pointer into the file ASYM. Any succeeding
GET N command would begin with the 7th line.

2) The PRIMARY OUTPUT file may not be used as FILENAME.

PUT N (FILENAME)
PUIK N (FILENAME)

These commands write N lines of data from the buffer to an output file.
FILENAME specifies the file where the data will be written. FILENAME may not
be the PRIMARY INPUT file or the PRIMARY OUTPUT file. If FILENAME is
specified, the data will be output to the beginning of the file and the file
will be closed when the write is complete. Thus, if FILENAME already contains
data, the old data will be lost. If FILENAME is not specified, output will be
to the PRIMARY OUTPUT file. The data will be written beginning at the PO
pointer and the PO pointer will then be moved at the next empty line in the
file.

If the command is PUTK, the lines written to the output file are deleted from
the buffer. If PUT is specified there are two possibilities:

a) The line pointer points to a line which will be deleted. In this case,
the line pointer is repositioned to the line irrnediately following the
deleted text.

For example, if the buffer appears as follows:

LINE 1
	LINE 2

LINE 3
LINE 4
LINE 5

and the command

*PUIK 2

is executed, the second and third lines will be written to the PRIMARY OUTPUT
file and deleted from the buffer, leaving the buffer as follows:

sC)
LINE 1
LINE 4
LINE 5

b) The line pointer points to a line which will not be deleted. In this
case, the position of the line pointer is not altered.

LIST N

This command lists N lines of data on the line printer. The current line
pointer position is not changed. The default value of N is 1.

COPY N INFTLE (OUTFTLE)

This command copies N lines from INFILE to OUTFILE. If OUTFILE is not
specified, the data is copied from INFILE to the PRIMARY OUTPUT file. OUTFILE
may not be the PRIMARY INPUT file. You may specify the PRIMARY INPUT file as
the INFILE without disturbing the pointer into the PRIMARY INPUT file.

When OUTFILE is specified, the data is copied from INFILE to the beginning of
the file and OUTFILE is then closed. If the PRIMARY OUTPUT file is used by
default, the data is copied from INFTTF to the PRIMARY OUTPUT file beginning at
the PO pointer.

The COPY command does not use the buffer to transfer data, and it will not alter
the buffer or the current line pointer.

5-25

5.3.8 	LINE POINTER CCFMANDS

The user may alter the position of the line pointer by using the commands
BEGIN, END, DOWN, and UP. The user may have the line pointer position printed
using the ccumand, N.

BEGIN

This command positions the line pointer at the first line of the buffer.

END

This command positions the line pointer at the last line plus one of the
buffer, that is, past any lines already entered into the buffer. **E0F** is
displayed on the console.

DOWN n

This command moves the line pointer n lines down the buffer. The default
value of n is 1. If the current line is q and n+q is greater than the number
of lines in the buffer, the effect is the same as the END command.

UP n

This command moves the line pointer n lines up the buffer. The default value of
n is 1. If the current line is q and q-n is less than 1, the line pointer is
set to point at the first line.

N

This command displays on the console the fluiter of the line pointed to by the
current line pointer.

5.3.9 	UTILITIES

The user may perform a variety of functions, including repeating previous
commands, listing portions of the buffer, setting the tabs, and terminating an
edit session, using the commands AGAIN, BRIEF, FTLE, QUIT, SDOS, TAB, TABS,
TYPE, ?, / and the iterate command function, m < command >.

AGAIN

This command performs the previous 'repeatable' command. For example, if the
buffer appears as follows,

5-26

LINE 1
LP 	- LINE 2

LINE 3
LINE 4
LINE 5
LINE 6

and the command

*K2

were performed, the buffer would be altered to,

LINE 1
LP 	 LINE 4

LINE 5
LINE 6

If the next command performed was

*A

the buffer would be altered to

LINE 1
LP 	 LINE 6

Commands that are not repeatable are:

AGAIN
BRIEF
FTLF
INPUT
MACRO
QUIT
TAB
TABS

If a non-repeatable command was the last oommand specified, and the AGAIN con-
mand is entered, the AGAIN command will look back to discover the last 'repeat-
able' command, which will then be performed.

FILE

This command transfers all the data in the buffer to the PRIMARY OUTPUT file.
The data is inserted beginning at the PO pointer, and the PO pointer is then
repositioned to the end of the inserted text. The rest of the PRIMARY INPUT
file (the portion from the PI pointer to the end of the PRIMARY INPUT file) is
then moved to the PRIMARY OUTPUT file beginning at the PO pointer. Both files
are then closed. The Edit session will then be terminated, *SLJ* EOJ will be
displayed on the console, and control will return to SDOS.

TYPE N

This command displays N lines on the console. The current line pointer is left
unchanged. If no value is specified for N, the current line is displayed. For
example, if the buffer appears as follows:

LINE 1
LINE 2

0 	 LINE 3
LINE 4
LINE 5

the command

*TY 2-4

would result in the following display on the console

LINE 2
LINE 3
LINE 4

QUIT

This command closes the PRIMARY INPUT and PRIMARY OUTPUT files and then termin-
ates the Edit session. If the PRIMARY OUTPUT file is a new file, this file is
deleted before the Editor is exited. *SLJ* EOJ is displayed on the console, and
control returns to SDOS.

TAB CHAR

This command defines the single character CHAR as the tab character. The tab
character may not be the :,< , or > characters. The default value of the tab
character is CONTROL-I, which is produced by depressing the I key while the
CONTROL key is depressed.

5-28

An example of setting the tab character to a different value is:

*TAB C
*I
INPUT*
USING C AS THE TAB CHARACTER IS NOT A GOOD IDEA

B:T
USING AS THE TAB 	HARA 	TER IS NOT A GOOD IDEA

TABS Cl C2 C3 ...

This command sets the tab positions to the Biven columns. When the TAB charac-
ter is entered from the console, the Editor replaces the TAB character in the
buffer with spaces up to the next TAB position. The default TAB positions are
8, 16, 24, 32, 40, 48, 56 and 64.

For example, the default TAB positions would produce this result,

*TAB C
*I
INPUT:
CHARACTER C IS THE TAB CHARACTER

*B:T
HARA TER 	IS THE TAB 	HARA 	IER

The TAB positions could be altered to produce this result,

*TABS 1 6 11 16 21 25 31 36
*I
INPUT:
CHARACTER C IS THE TAB CHARACTER

*B:T

HARA 	IER IS THE TAB 	HARA IER

m<coranands>

This form of the command line will cause the commands inside the angle
brackets to be repeated m times. If m is omitted, the commands inside the
brackets are performed once. For example, if the buffer appears as follows:

LP 	'SJ:RZ 	DAR2

	

PPSL 	WD
ADDR,R2 DAR1
ADDR,R3 DAR1

	

CPSL 	WD

the omrand

* 2<F WD:S WDWC$>

would result in the buffer being altered to:

	

STRZ 	DAR2
PPSL WC
ADDR,R2 DAR1
ADDR,R3 DAR1
CPSL WC

Iteration commands may be nested to a depth of 16 levels.

SDOS

This command suspends the Editor and returns control to.SDOS. ihe Editor may
be continued using the SOOS CONTINUE cc mand.

This command displays the Editor's I/O status. Entering the following command:

results in the following infbnmation being displayed on the console.

PI 	= PRIMARY INPUT Filename
LINE 	= Next line to "GEI." fPom the PI file
PO 	= PRIMARY OUTPUT Filename
LINE 	= Next line to "PUT" to the PO file
LAST AI = Jast Alternate Input file referenced
LAST AO = Tast Alternate Output file referenced

LP 	

5-30

If the / character is the first character in an EDIT command, the <, >, and:
characters do not perform their usual functions. For example, the command

F $LEklANGLE,< $

would be rejected because the angle brackets do not balance. The command

/F$LEFTANGLEM

would find the string 'LEFTANGLE,C.

i BRIEF

This command changes the state of the BRIEF switch from OFF to ON or from ON to
OFF. Under the initial BRIEF state, OFF, the Editor will type the line pointed
to by the current line pointer after completing the carmands END, UP, DOWN,
FIND, SUBSTITUTE, and REPLACE. For example, if the buffer appears as follows:

C1) 	- LINE 1
LINE 2
LINE 3

and the command:

*D 1

is performed, the Editor will move the line pointer down the buffer to LINE 2
and display on the console:

LINE 2

The user may issue a BRIEF command to change the BRIEF switch to ON. This state
will suppress the display of the current line. For example, if these commands
veere entered:

*BRIEF
*D 1

the Editor would perform the DOWN command to move the line pointer down the
buffer to LINE 3 but would not display the line.

If the BRIEF switch is OFF, the user may still suppress the display if he
appends a (.) to the carmand. In the previous example, if the line pointed at

5-31

LINE 1 and the BR-UT' switch was OFF, this comnand:

*D.1

would suppress the display of the current line following completion of the D
=mand.

If the BRIEF switch is ON, meaning display is suppressed, the user may display
the current line by appending the (.) to the command.

5.3.10 MACROS

The user may define or execute a macro through the use of the MACRO =and.

MACRO m=COMMANDLINE

This command is the MACRO definition command. m is an integer Which identifies
the macro, and must be greater than 0 and less than 128. COMMANDLINE must not
contain a macro execution or definition command; this will result in an error
when the macro is executed.

If a MACROm already exists, and MACROm=CCMMANDLINE is performed, CCMMANDLINE
will replace the old MACRQn.

MACRO m

This command executes MACRO m. The effect is equivalent to having entered the
command line COMMANDLINE used when the MACRO was defined.

5.4 	EDITOR MESSAGES

THis section provides a list of all Editor messages and an explanation of their
meaning.

** WSP FULL **
The buffer is full.

** NOT FOUND **
The given string could not be found.

** DISK FULL **
The parameter n is in error.

** RANGE? **
The parameter N is an error or an attempt was made to reference lines

which are not in the workspace.

5-32

** MODE **
An attempt was made to execute a macro string from within a macro string;

this is not allowed.

** NEST **
The vesting brackets < and > do not balante.

** COMMAND? **
An unknown ccmmand was encountered in the command line.

** BREAK **
The ESCAPE Console Key was depressed to terminate execution of a file I/O

function.

** PROCEDURE ERROR **
Editor usage is in error.

** SDOS STAT= XX **
XX is the SDOS SRB status byte returned to the editor when an unusual

request or event has occurred. The rreaning of the status byte can be found in
the System Reference Manmal,

** NO PI **
For this editing session there is no PRIMARY INPUT file; the user may not

do "GET's" with out specifying an Alternate Input file.

** NO PO **
For this editing session there is no PRIMARY OUTPUT file; the user may not

do "PUT's" without specifying an Alternate Output file.

** READ FILE? **
An attempt was made to read from a non-existent file or an illegal input

device.

** (INPUT) **
The editor response is in reference to an input attempt.

** (OUTPUT) **
The editor response is in reference to an output attempt.

** PI **
** PO **
** AI **
** AO **

The editor response occurred in reference to the Primary or Alternate
Input or Output, as applicable.

5-33

**NEW FTIE **
A new file was created.

** (LPT1) **
The editor response occurred in reference to the line printer.

** ASSIGN PROBLEM **
The editor was unable to assign a channel to a given device.

** PI=NEW FTLE? **
An attempt was made to "EDIT INFILENAME OUTFILENAME" where INFILENAME and

OUTFILENAME veere not the same file and INFILENAME was non-existent.

** EOF **
An end-of-file was reached on input or output or the end of workspace text

was reached.

** NO FILES SPECIFIED **
The user initiated the editor without specifying any primary files; for

this editing session the user may not do "GET's" or "PUT's" without specifying
an Alternate file.

** TRUNCATED **
A command line exceeded 128 characters and was rejected.

An INPUT line exceeded 128 characters and was truncated to the first 128
characters entered.

A SUBSTITUTE caused the line to exceed 128 characters and the line was
truncated to 128 characters.

(See Example in Sec. 5.3.5)

5-314

CHAPTER 6

THE ASSEMBLER

	

6.0 	INTRODUCTION

The Assembler is the system program used to translate 2650 source program code
into 2650 object code that is executable by the TWIN system. The Assembler
perforrns three major tasks:

1) It will assemble the user specified source file and generate hex format
object code which is written to a user specified object file. Hex format
object code is described in Apendix C.

2) It will create a listing which includes every assembled source instruction,
the instruction address generated for the source instruction, the object
code generated for the source instruction, and all assembly errors. This
listing is written to a user-specified device or file. The assembler
directive PRT may be used to suppress the listing and list only the errors.
For details on 2650 assembly language syntax, instruction codes and other
related material, consult the TW►IN 2650 Assembly Language Manual.

3) It will display errors on the console, if not overridden by a cominand
parameter.

	

6.1 	PRE-ASSEMBLY TASKS

The user must insure that two conditions exist before the Assembler mav be
used:

1) The source program is present on a floppy disk file that is on a currently
loaded disk.

2) SDOS is ready to accept commands. SDOS presents its prompt character, > ,
when it is ready for commands.

n
C

O

0

0

IJ
0

6.2 	THE ASM COMMAND

To execute the Assembler, the user enters the following SDOS command

ASM SOURCEFILENAME (LISTFILENAME) (OBJEC11.ILENAME)(WIDE) (NOERR)

where:

SOURCEFILENAME is the name of the disk where the source code resides
LISTFILENAME is the name of the disk file or device where the assembly

listing is to be written.
OBJECTFILENAMEis the name of the disk file or output device where the hex

format object code is to be written.
WIDE 	the output line is to be 120 print positions wide; default is

72 print positions.
Note: If the listing is directed to the TWIN Printer, the N/C
(Normal/Compacted) print switch on the printer should be set to
the position compatible with the output line width.

NOERR 	indicates that errors should not be displayed on the console.

For example, if the double precision add/subtract subroutine entered in
Chapter 5 (see Figure 6-1) was to be assembled, the following tasks would have
to be performed.

a) Six EQU assembler directives would have to be entered into the source
file. These EQU's are necessary to define the meaning of R0,R1,R3,
UN and WC to the assembler. See the 2650 Assembly Language Manual
for details.

b) The command

ASM DADDSB/O,LPT1,DADOBJ/0

will write the object code produced on file DADOBJ/O, and produce the
listing in Figure 6-2 on the line printer.

6.3 	POST-ASSEMBLY TASKS

When the Assembler has completed its task, SDOS will display its prompt
character, > , to indicate it is ready for commands. Errors will have been
displayed on the console unless the N option was entered, in which case the
error display will have been suppressed.

If the Assembler produced a listing, the listing will contain the two heading
lines in Figure 6-2, the assembled source code, and the final line which

6-2

* DOUBLE PRECISION ADD. A IN RO,H1. B IN P2,R3
* ON RETURN, A+B IS IN R2,R3
*

DADD STRR,R1 DAR1
ADDR,R3 DAR1
PPSL 	WC
ADDZ 	R2
STRZ 	R2
CPSL 	WC
RETC,UN

DAR1 RES 1
*

* DOUBLE PRECISION SUBSTRACT. A IN R2,R3. B IN RO,R1
* ON RETURN, A-B IS IN R2,R3
*

DSUB STRR,RO DSRO
STRR,R1 DSR1
SUBR,R3 DSR1
PPSL 	WC
SUBR,R2 DSRO
DPSL WC
RETC,UN

*
DSRO RES 1
DSR1 RES 1

END 	DADD

FIGURE 6-1

SAMPLE PROGRAM

6-3

TWIN ASSEMBLER VER 1. 0 	 PAGE 0001

LINE ADER OBJECT E SOURCE

0001 	* DOUBLE PRECISION ADD. H IN URI. B IN R.2,R1
0002 	* ON RETURN, A+B IS IN R2, R1.
0001

0004 0000 	RO 	EQU 	0

0005 0001 	R1 	Eipi 	1

0006 0002 	R2 	EQU 	2

0007 000-‹ 	R 	EGIU 	3
0008 0003 	UN 	EOU

0009 0008 	4i: 	ECIU 	8

0010
0011 0000 0909 	DfiDD STRR,R1

0012 0002 6807 	ADDR,R1 DAR1

0013 0004 7708 	PPSL 	MC

0014 0006 22 	Am 	R2

0015 0007 C2 	STRZ 	R2

0016 0008 7508 	CPSL 	WC

0017 000A 17 	RETC,UN

0018 0008 	DARi RES 	1

0019

0020 	* DOUBLE PRECISION SUBIRACT_ H IN R2,R3. B IN RO,R1

0021 	* 0W RETURN, A-B IS IN Pl, R3.

0022

0021 0000 C8OB 	DSUB STRP,R0 DSRO

0024 000E C9019 	STER, R1 DSR1

0025 0010 ABOC 	SUBR.R1 DSR1

0026 0012 7708 	PPSL 	WC

0027 0014 PR01 	SUBR,R2 DSRO

0028 0016 7508 	CPSL 	WC

0029 0018 17 	RETC, UN

0010

0031 0019 	DSRO RES 	1

0032 001A 	DSR1 RES 	1

0013 0000 	END 	DADD

TOTAL ASSEMBLY ERRORS = 0000

FIGURE 6-2

SAMPLE ASSEMBLY LISTING

indicates the number of assembly errors. The columns in the second line
of Figure 6-2 have these meanings:

LINE -- This column contains the number of the assembled source code line.
This column is provided for the programmer's convenience as a aid
when using the Editor to correct source code lines that are in
error.

ADDR -- This column contains the address of the assembly location counter
and indicates the address at which the first byte of object code is
to be loaded.

OBJECT --This column contains the data bytes, (t.D hex characters per byte)
which are to be stored in sequential locations starting with the
address in the Address Column.

E --This column contains the error codes for the line of source code
represented in the Source column. The possible error codes are
discussed in section 6.4.

SOURCE --This column reproduces the source code as it was read by the
Assembler.

6.4 	ASSEMBLER ERRORS

The assembler provides an indication of errors in the source code by printing
an alphabetic character in the error field of the listing. For convenience,
the erroneous lines of code are also reproduced on the console output device,
unless the NOERR option is invoked with the ASM command. The error codes and
their interpretation are:

L -- Label Error. The label contains too many characters, contains invalid
characters, has been previously defined or is an invalid symbol.

O -- Op-code Error. The op-code mnemonic has not been recognized as a valid
mnemonic.

R -- Register Field Error. The register field expression could not be
evaluated, or when evaluated, was less than 0 or greater than 3, or the
register field was not found.

S 	Syntax Error. The instruction has violated some syntax rule.

U 	Undefined Symbol. There is a symbol in the argument field which has
not been previously defined.

6-5

A -- Argument Error. The argument has been coded in such a way that it
cannot be resolved to a unique value.

P -- Paging Error. A memory access instruction has attempted to address
across a page boundary.

W 	Warning. The Assembler has detected a syntactienlly correct but unusun1
construction. The error will be counted but will not inhibit the
production of the object module.

In addition, the assembler will display the following run-time error messages
on the console if it detects an error While trying to execute the ASM command:

MISSING INPUT FILE PARAMETER

The input file was not specified.
ASM (j-) is not a valid command.

UNACCEPTABLE INPUT DEVICE.

The input file is not on a valid input device.
ASM LPT1 is not a valid command.

INPUT FILE ASSIGN ERROR - SRB STAT=XX

The SRB Status codes are listed in the System Reference
Manual.

When the assembler has completed its analysis of the parameters and
has determined that they are acceptable it displays the following
message:

ASSEM VER 1.0

6.5 	LOADING AN ASSEMBLED PROGRAM

To load an object file assembled by the TWIN assembler, utilize the following
procedure:

1) Insure that the object file exists on a disk loaded in one of the disk
drives and that SDOS is ready to accept ccamands.

2) Enter the SDOS command

RHEX OBJEMILE

where OBJECTFILE Is the name of the file that contains the object code.

When the loading process is complete, the SDOS prompt character, > , will he
displayed.

Hex object code programs created on paper tape outside the TWIN (for example,
by the 2650 cross-assembler) can be read into slave memory by the RHEX command
or to a disk file by using the SDOS COPY command (Section 4.4.4). Note that a
CTRL-Z character is required by the COPY command at the end of the tape in
order to terminate the COPY and close the file.

A binary load file can be made from slave memory by using the MODULE command.

6.6 	THE ASSEMBLER TAB FEATURE

The TWIN assembler contains a tab feature which is useful in conserving disk
space. This is of particular value when large source files are being assembled.

The assembler will interpret the CTRL,I character (ASCII hex 09) in a source
line as a tab character and cause the listing produced by the assembler to tab
to the next tab position. These positions are at columns 8, 16, 24, 32, 40, 48,
56, and 64. Disk space is conserved since spaces are then not required for
readibility.

In order for the CTRL-I character to appear in the source file, the Editor TAB
command must be used to define an alternate TAB character. Any CTRL-Is entered
will then be passed to the source file. A disadvantage of this technique is
that readibility of the source file will be poor, since the CTRL-I is a non-
printable character.

CHAP1h,R 7

THE PROM PROGRAMMER

7.0 	INTRODUCTION

TWIN provides facilities for programming and creating programming tapes for
PROMs. The current hardware and software support two types: the 82S115,
bipolar fusible link PROM, and the 1702A, MOS erasable PROM.

The system software contains three commands which utilize the PROM programming
sockets on the TWIN front panel (see Figure 3-3): RPROM, CPROM and WPROM.
The 24-pin socket labeled PROM 1 is used for 1702A PROMs. The 24-pin socket
labeled PROM 2 is used for 82S115 PROMs. The third socket is reserved for
future use.

7.1 	USING THE PROM PROGRAIIIERS

This section describes the SDOS commands applicable to the PROM programmers and
certain basic precautions that should be taken while using the PROM programmers.

The user should insure that:

1) PROM power is always OFF whenever inserting or removing PROMs from their
sockets. Power to the socket is controlled by the PROM PWR switch on
the front panel. The PPWR indicator above the switch is lighted when
power is on.

2) PROMs are inserted in the correct sockets. Use of the wrong socket is
likely to cause permanent damage to the PROM.

3) PROMs are inserted in the correct fashion. Leave the socket lever up
normally. Push down on the lever to clamp the PROM in the socket.

4) Align pin 1 of the PROM with pin 1 of the socket. Pin 1 is adjacent to
the lever.

The SDOS commands that apply to the PROM programmers are RPROM, WPROM and CPROM.
RPROM is used to read the contents of a PROM into slave memory. WPROM is used
to write a portion of slave memory to the PROM programmer. CPROM is used to
compare the contents of slave memory with the contents of a PROM.

7-1

RPROM (A1) (N) (A2) (A3) (C)

This command is used to read the contents of the PROM inserted in socket N into
slave memory. Al is the first location in slave memory to be stored into. The
default value of Al is 0. N is the PROM port to be read. If N is equal to 1
the 1702A port is specified. If N is equal to 2 the 825115 port is specified.
The default value of N is 1. A2 is the address to begin reading from on the
PRCM. The default value of A2 is 0. A3 is the last address to read from on the
PROM. The default value of A3 is 01FF. C determines whether the data from the
PRCM should be complemented. If C is equal to 1, the data is complemented
before it is stored in memory. If C is equal to 0, the data is not comple-
mented. The default value of C is 0.

PRM ERROR RESPONSES

7 - DEVICE WRITE ERROR
29 - PROM OWER FAILURE
30 - INVALID PARAMETER
35 - THEGAL START ADDRESS
36 - TILEGAL END ADDRESS

7-2

WPROM (A1) (N) (A2) (A3) (C)

This command causes the PROM on port N to be programmed with the contents of
slave memory. Al is the address of the first slave memory byte to be
programmed in the PROM. The default value of Al is 0. N is the number of the
PROM programmer port. N egaal to 1 corresponds to the 1702A port and N equal
to 2 corresponds to the 82S115 port. The default value of N is 1. A2 is the
initial PROM location and A3 is the last PROM location to program. The default
value of A2 is 0. The default value of A3 is OOFF. C indicates whether the
data should be complemented before it is programed in the PROM. If C is equal
to 1, the data will be complemented. If C is equal to 0, the data will not be
complemented. The default value of C is 0.

After each memory byte has been written, the PROM is read. The byte read from
the PROM is compared with the byte written. If the bytes are not equal, a
certain number of retries are attempted. If the comparison stilt fails after
these retries, the PROM address and the contents of the PROM are displayed on
the console. The maximum number of retries is sixteen (16) for the 1702A and
eiglit (8) for the 825115. If an unsuccessful compare occurs on the 1702A, the
PROM is rewritten five (5) times before the next comparison.

PRM ERROR RESPONSES

7 - DEVICE WRITE ERROR
29 - PROM POWER FAILURE
30 - INVALID PARAMETER
35 - INVALID START ADDRESS
36 - INVALID END ADDRESS

7-3

CPROM (A1) (N) (A2) (A3) (C)

This command causes the contents of the PROM on port N to be compared with the
contents of slave memory. Al is the location of the first slave memory byte
to be used in the comparison. The default value of Al is 0. N is the nunber
of the PROM programmer port. N equal to 1 corresponds to the 1702A port and N
equal to 2 corresponds to the 82S115 port. The default value of N is 1. A2
is the initial PROM location to be compared with slave memory. The default
value of A2 is 0. A3 is the last PROM location to be compared with slave
memory. The default value of A3 is OIFF. C indicates whether the slave memory
data should be complemented before it is compared with the contents of PROM.
If C is equal to 1, the slave memory data will be complemented before the com -
pare occurs; if C is equal to 0, the data will not be complemented. The default
value of C is 0.

If the value read from the PROM and the slave memory data are not equal, the
memory location, its contents, and the PROM contents are displayed on the
console.

PRM ERROR RESPONSES

7 - DEVICE WRITE ERROR
29 - PROM POWER FAILURE
30 - INVALID PARAMETER
35 - INVALID START ADDRESS
36 - INVALID END ADDRESS

CHAPTER 8

THE DEBUGGER

8.0 	INTRODUCTION

The Debugger is a combination of system software and unique hardware features
which help the user debug programs in four ways:

1) It displays memory and register contents, as well as Debug status, and
allows these values to be modified.

2) It controls program execution and allows the user to request control
at specified locations using breakpoints.

3) It traces program execution and displays relevant machine states.

4) It allows debugging in the user's prototype system.

To accomplish these functions, the Debugger monitors the user program progress
and state and saves necessary infbrmation. The monitoring process requires that
from time to time, the Debugger must take control of the system. (For this rea-
son, user programs will run approximately 14% slower when they are under Debug
control.)

The Debugger uses breakpoints to control user program execution. A breakpoint
is a location in the user program where the user wishes to have the Debugger
take control of the system.

The Debugger can do a trace to observe program execution. The entire program
or portions can be traced. As each instruction is executed, various parameters
that indicate the system state are displayed.

The Debugger is also used to debug user developed hardware. The TWICE cable
allows the user to connect the slave CPU hardware directly to the user developed
system here in-circuit-emulation may be performed.

There are three important facts that require explanation before discussing the
Debugger:

1) The special SDOS keys, ESC and SPACEBAR retain their meanings while the
Debugger is executing. Their use is discussed in Section 4.2. Note in
particular the impact of the ESC key on the EXAM command.

8-1

2) If it is necessary to change the slave mode for a Debug session, the
change must be made before the Debugger is invoked. To change the
slave mode, execute the SLAVE command, which is described in Section 8.4.

3) Executable programs are stored in two formats:

a) Hex format. Two hex characters are stored for each byte of object
code produced. The Assembler creates hex formmt files. RHEX is the
SDOS command used to read hex format files. Hex format is described
in Appendix C.

b) Binary format. One byte of data is stored for each byte of object
code. The SDOS command, MODULE, creates binary format files. LOAD
is the SDOS command used to read binary foruat files.

If you are familiar with Debuggers and their commands, Sections 8.1, THE DEBUG
PACKAGE, 8.2, THE DEBUG COMMAND, 8.4, DEBUG COMMANDS, and 8.5, the TWICE CABLE
are recommended.

If you are not familiar with Debuggers, the above sections plus Section 8.3,
SAMPLE DEBUG SFSSION, are reccmmended.

8.1 	THE DEBUG PACKAGE

The Debugger is a subsystem of the SDOS system that is enhanced through some
WIN hardware features that allow the Debugger to control slave CPU execution.
When the Debugger is exeeuting, the user has a subset of the SDOS commands at
his disposal.

When the user invokes the Debugger, the debug package is loaded into a Master
area (Overlay Area 1). In addition, a small trace package is loaded into the
slave memory (see Debug command). This package, which is 100 bytes long, is
used to save and restore the slave CPU registers when using GO and Breakpoints,
and serves as the interface between the Master and slave CPU's.

After the Debug package has been loaded, the SDOS prompt character, > , is is-
sued to the console. Whenever this prompt is displayed, the Debugger is ready
to accept commands. The commands available to the Debug user are listed in
Table 8-1. Note that several of the primary functions of the Debugger,
such as examining and altering memory (the EXAM command), and execution control
(the GO and XEQ commands), are SDOS commands. The other SDOS commands are not
available When in Debug.

To start a user program While utilizing Debug, load the user program into slave
memory via the SDOS 'LOAD' or 'RHEX' command. Start the DEBUG package, using
the DEBUG command. Select the desired DEBUG functions (Trace, Breakpoint, etc.).

8-2

SYSTEM CONTROL

TABLE 8-1
DEBUG COMMANDS

FILE MAINTENANCE SYSTEM OPTIONS

ABORT 	 DELE1E
GO 	 ASSIGN
XEQ 	 CLOSE
LOAD

SYSTEM

BREAKPOINT 	STATUS 	SYSTEM 	MEMORY

* BKPT 	* DSTAT 	* RESET 	DUMP
* CLBP 	STATUS 	* SET 	EXAM

* TRACE 	 PATCH

* These commands are available only after the DEBUG con-mand has been issued.

The user must take care not to overlay the trace package. When the user issues
the DEBUG command, the trace package is loaded into slave memory, which could be
overlaid by a user program if the LOAD or XEQ command were executed later.

When the SDOS prompt character is not displayed on the console and the operator
desires control, the following procedure should be utilized:

1) Depress the 'ESC' key twice. If the trace mode is active, a single
depression is sufficient.

2) When the SDOS prompt character appears, enter the desired commands.

3) When it is necessary to continue the user program, typing the 'GO'
command will continue the user program from the point it was
interrupted.

The user program will be stopped, which will result in the SDOS prompt
character being displayed and the system becoming available for input commands,
under the following conditions:

1) The user requested console control by depressing the ESC key.

2) The user program has encountered a breakpoint.

3) The user program has executed a HALT instruction.

4) The user program has executed one instruction in the TRACE STEP mode.

5) The user program has reached a normal end of job condition.

8-3

The only way for the user to terminate the Debugger is to use the SDOS 'ABORT'
=mand. This may be accomplished by ABORT DEBUG or ABORT *• In either case,
both DEBUG and the user program are terminated.

8.2 	THE DEBUG C(}IMAND

The user loads and starts the Debug subsystem by issuing the following command:

1DEBUG (ADDRESS) (DEVICE)

This command causes the Debug package to be loaded. ADDRESS is the address in
slave memory where the trace package is loaded. The default value of ADDRESS
is the top of memory (as specified in the SLAVE command) minus the 100 bytes
necessary for the trace package. DEVICE is the output device or disk file where
the Debug output displays will be written. The default value of DEVICE is CONO,
the console output device.

8.3 	SAMPLE DEBUG SFSSION

Let's monitor the program in Figure 8-1 with the Debugger so that we may exam
ine some of the Debug features. The sample program hos been assembled into hex
object code which was written to a disk file named DEMO. The starting location
for the program is 3000.

The system is in the 2650 slave mode 0 by default, so an initial SLAVE command
is not required.

To lood the hex code from the file DEMO, enter the SDOS ccamand RHEX DEMO (line
1 of the Figure 8-2). This command loads the object code on the disk file DEMO
into slave memory. (If the file DEMO contained a binary lood module produced
from the assembler output by the use of the MODULE command, the command LOAD
DEMO would be used). To lood the DEBUG package, enter the SDOS command DEBUG
(line 3 of Figure 8-2). Both the object code from the sample program in Figure
8-1 and the DEBUG trace package ncw reside in slave memory. The DEBUG package
is located in a Master CPU area.

The sample program uses the Registers 0 and 1. If we wish to give these regis-
ters specific values, the SET command must be utilized. Suppose we wish to
enter the value 0 in Register 0 and 1 in Register 1. To do this, enter SET RO
01. (line 6 of Figure 8-2). SET specifies the Set Register command, and RO
specifies the first register to store into. If we desire to view the Debug
status before beginning execution, the DSTAT command must be employed. Enter-
ing DSTAT (line 8 of Figure 8-2) causes the information on line 9 of Figure 8-2
to be displayed. This is a one line display which provides the location of the
last instruction executed in the slave CPU, the active breakpoints, and the con-
tents of the registers in the slave CPU. The area indicated by(pdisplays the

8-4

TOP 	ADDZ 	R1 	ADD REGISTER 1 REGISTER 0
LOOP 	ADDI,RO 1 	INCREMENT RO

COMI,RO 0 	COMPARE RO WITH 0
BCFR,O 	LOOP 	1F COMPARE FAILED, BRANCH TO LOOP
BCTR,O 	TOP 	IF COMPARE SUCCEEDED, BRANCH TO TOP

FIGURE 8-1

SAMPLE PROGRAM

1 > RHEX DEMO
2 *RHX* EOJ
3
4 > DEBUG
5
6 > SET RO 0 1
7
8 > DSTAT
9 	P=0000
	

R=00 01 00 00 00 00 00 00 00

0 	 0

FIGURE 8-2

LOADING OBJECT CODE AND DEBUGGER

INITIALIZING SLAVE REGISTERS

program counter at the time the last slave CPU instruction was executed.
P=0000 is the value of the program counter before any slave instruction is
executed. The area indicated by 2 displays the breakpoints currently active
in the Debugger. Since we have not set any breakpoints, no information is dis -
played. 3 contains the value of Register 0. 4 contains the values of Regis-
ters 1, 2, and 3 of Bank 0. 5 contains the values of Registers 1, 2 and 3 of
Bank 1. 6 contains the PSU and PSL values.

Suppose we wished to trace the execution of this program. This is accomplished
by turning the TRACE function on, as shown on line 1 of Figure 8-3. TR A S is
the TRACE (TR) command which requests that all (A) instructions be traced and
that the single step (S) mode be employed. The All mode results in the TRACE
display being written to the console for every instruction executed by the slave
CPU, and the single step mode returns control to the operator after each slave
CPU instruction that is executed.

To start the execution of the program, the command, GO 3000 is entered (line 3
of Figure 8-3). Because the object code was initially loaded with the RHEX com-
mand, a storting address (3000) must be given with the GO command. (If the LOAD
command is used to initially load the object code, the start address is automa-
tically entered into the system.) After this instruction is executed, the
Debugger, which is in the single step trace mode, assumes control and produces
the TRACE display (Lines 4 and 5 of Figure 8-3). The headings in line 4 have
the following meanings, where all values are in hex:

LOC 	is the location of the last instruction executed.
INST 	is the value of the last instruction executed.
MNEMON 	is the instruction mnemonic, including the register or condi -

tion code value, if required.
XR 	is the index register, if any, for the instruction.
U 	If U is +, auto increment indexing is performed for an absolute

addressing instruction. OR, a forward address is calculated
for a relative addressing instruction.
If U is -, auto decrement indexing is performed for an
absolute addressing instruction. OR, a backward address is
calculated for a relative addressing instruction.

OPAD 	is the operand value or operand address.
IADD 	is the indirect address value.
IV 	is the index register value
EADD 	is the calculated effective address for the last instruction.
RO 	is the value of RO
R1,R2,R3 are the values of R1, R2, and R3 in Bank 0.
R4,R5,R6 are the values of R1, R2, and R3 in Bank 1.
PU 	is the value of the Program Status Word Upper.
PL 	is the value of the Program Status Word Lower.

8-7

1 >TRAS
2
3 > GO 3000

	

4 LOC INST 	MNEMON XR U OPAD IADD IV EADD RO R1 R2 R3 R4 R5 R6 PU PL
5 3000 81 	ADZ ,01 	 01 01 00 00 00 00 00 00 40
6
7 > G

	

8 3001 8401 	ADI ,00 	01 	02 01 00 00 00 00 00 00 40
9
10 > G

	

11 3003 E400 	CMI ,00 	00 	02 01 00 00 00 00 00 00 40
12
13 > G

	

14 3005 987A 	BFR ,00 	- 3001 	=3001 02 01 00 00 00 00 00 00 40

FIGURE 8-3
SINGLE STEP TRACE ALL MODE

Line 5 informs us that location 3000 was the last location executed; 81 was the
hex value of that location; ADZ,01 was the instruction mnemonic (note that ADZ
is a shortened form of ADDZ. See Table 8-2 for mnemonic list), and the next
nine entries indiente the register contents.

We can single step through the next instruction by entering the SDOS command
G (the GO command, line 7 of Figure 8-3). As can be seen in lines 7 - 8, as
well as lines 10 - 11 and 13 - 14 of Figure 8-3, the Debugger performs a single
step and then displays the TRACE information.

Suppose we did not wish to single step, but still wished to trace all the
instructions executed. This could be accomplished by altering the TRACE mode.
TR A (line 1 of Figure 8-4) requests that all instructions be traced, but does
not request the single step mode. When the next GO command is executed (line 3
of Figure 8-4), the Debugger takes control of the slave CPU after every slave
CPU instruction is executed, but after it displays the TRACE information, con-
trol is not returned to the user, but to the slave CPU. This results in the
lines from 4 to 14 being displayed, one line at a time, as each instruction is
executed in the slave CPU. If we are interested in whether the logic of the in-
struction at 3007 is correct (3007 will not be executed until Register 0 over -
flows and reverts to 0), we would have to wait for large number of TRACE lines
to be displayed. To cancel the current trace, the ESCAPE key is pressed, which
terminates the current TRACE (the effect can be noted on line 14 of Figure 8-4)
and displays this prompt, >>, (line 15 of Figure 8-4) to indicate readiness to
accept commands.

Suppose we desire not to view any TRACE's until the instruction at 3007 is exe-
cuted. This could be accomplished by the actions shown in Figure 8-5. First we
set a breakpoint by the command in line 1 of Figure 8-5. BKPT 3007 requests
that a breakpoint be set at location 3007 of slave memory. Breakpoints are used
to control execution by commanding the Debugger to take control whenever the ad-
dress that is a breakpoint is referenced. Since we don't wish to see all the
executed instructions traced, the command of line 3 of Figure 8-5 turns the
TRACE mode off.

Execution is resuned using the GO command (line 5 of Figure 8-5). The Debugger
monitors the slave program execution, and when the instruction at 3007 is execu-
ted, the display on lines 6 and 7 of Figure 8-5 is produced. Line 6 is the
standard TRACE display of the last instruction executed. Line 7 indicates that
the program execution stopped because a breakpoint was encountered. In line 6,
note that the EADD, which is the address mere control will be transferred, is
3000. The prompt character, '>', at line 9 indinates that control has been
returned to the operator.

Suppose we wished to monitor the execution of all the branch instructions. This
could be accomplished using the commands in Figure 8-6. First, let's set Regis-
ter 1 to FA (line 1 of Figure 8-6). Then, via the DSTAT command, we can view

8-9

01-9

3(1°W TlY
tr-8 2H2DId

Oh 00 00 00 00 00 00 10 90 LOOF=
Oh 00 00 00 00 00 00 LO 90
011 00 00 00 00 00 00 10 90
017 00 00 00 00 00 00 10 50 100E=
017 00 00 00 00 00 00 10 50
Otr 00 00 00 00 00 00 10 50
Oti 00 00 00 00 00 00 10 170 LOOE=
Ot(00 00 00 00 00 00 10 110
011 00 00 00 00 00 00 10 t70
Ot(00 00 00 00 00 00 10 EO

LOOE -
00
10

LOOg
00
10

LOOE -
00
LO
10 -

Y
00' blAE
00' IWO
00' IGV
00' Lin
00' IWO
00' IGY
00' 2:12g
00' IWO
00' IGV
LO' ZGY

« 51
10118 LOOE 171.
YL96 5008 EL
00173 E00E z 1
10172 LOOE LL
vL96 5008 01
00fi8008 6
10178 LOOg
VL96 500E L
0017E EooE 9
10179 LOOE 5
19 000E t?

000E 0 < E

V Hl < L

1 >BKPT 3007
2
3 >TRACE OFF
4
5 >G
6 3007 1877 	BTR ,00 	- 3000 	=3000 00 01 00 00 00 00 00 00 21
7 3007 BREAK
8
9>

FIGURE 8-5

USING BREAKPOINTS

1 > SET R1 FA
2
3 > DSTAT
4 P=3008 BP=3007 WR
	

R=00 FA 00 00 00 00 00 00 21
5
6 > TRA J
7
8 > G 3000

	

9 3005 987A 	BFR ,00
	- 3001 	=3001 FB FA 00 00 00 00 00 00 80

	

10 3005 987A 	BFR ,00
	

- 3001
	

=3001 FC FA 00 00 00 00 00 00 80

	

11 3005 987A 	BFR ,00
	

- 3001
	

=3001 FD FA 00 00 00 00 00 00 80

	

12 3005 987A 	BFR ,00
	

- 3001
	

=3001 FE FA 00 00 00 00 00 00 80

	

13 3005 987A 	BFR ,00
	

- 3001
	

=3001 FF FA 00 00 00 00 00 00 80

	

14 3005 987A 	BFR ,00
	

- 3001
	

=3001 00 FA 00 00 00 00 00 00 21

	

15 3007 1877 	BTR ,00
	

- 3000
	

=3000 00 FA 00 00 00 00 00 00 21
16 3007 BREAK

FIGURE 8-6

USING THE TRACE ALL JUMPS MODE

the current DEBUG status (line 3 and line 4 of Figure 8-6). Note that the pre-
sence of the breakpoint at 3007 is indicated in this display. The WR in the
section BP=3007 WR, refers to the fact that either a read or a write to location
3007 will cause a break. Line 6 of Figure 8-6, TRA J, is the TRACE (TRA) com -
mand which requests that only branch (J) instructions be displayed.

When the slave program is continued through the GO command (line 8 of Figure
8-6), the Debugger displays the TRACE infwmation for all branch instructions
executed, nether the branch was performed or not (lines 9 - 15 of Figure 8-6).
The Debugger informb us that a break has taken place in line 16 of Figure 8-6.

If we desire to clear a breakpoint, the command in line 4 of Figure 8-7 must be
executed. CLEP 3007 requests that the breakpoint at location 3007 be cleared.
By viewing the DSTAT displays in lines 2 and 7 of Figure 8-7, the effect of the
CLBP operation is clear.

When we are finished with a Debug session, the Debugger must be exited using the
SDOS comnand, ABORT. Consult Figure 8-8 for an example of exiting the Debugger.

8.4 	DEBUG COMMANDS

This section lists ccenands that are used with the Debugger. Eight comands are
primarily used with the Debugger, but may be used under SDOS. These commands
are:

GO
LOAD
XEQ
DUMP
EXAM
PATCH
STATUS
SLAVE

GO is used to start user programs. LOAD is used to read binary load files into
the slave memory. XEQ is a combination of the LOAD and GO programs. DUMP dis-
plays the contents of slave memory on a specified device. EXAM allows the user
to examine or alter slave memory. PATCH allows the user to alter slave memory.
SLAVE identifies the slave CPU and sets the TWICE debug mode. STATUS displays
the status of the slave CPU and the job being executed by it.

1 > DSTAT
2 P=3007 BP=3007 WR 	R=00 FA 00 00 00 00 00 00 21

3
4 > CLBP 3007
5
6 > DSTAT
7 P=3007 	R=00 FA 00 00 00 00 00 00 21

FIGURE 8-7

CLEARING BREAKPOINTS

1 > ABORT DEBUG

FIGURE 8-8
TERMINATING A DEBUG SESSION

8-14

There are six commands that are unique to the Debugger and can only be used
after the DEBUG comand has been executed. These carmands are:

BKPT
CLBP
RESET
SET
DSTAT
TRACE

BKPT and CLBP are used to set and clear breakpoints. RESET generates a RESET
pulse to the slave processor. SET allows the user to set slave CPU registers.
DSTAT provides infórmation on the Debug status. TRACE allows the user to trace
slave CPU execution.

GO (ADDRESS)

This command causes control to be passed to a location in slave memory.

If ADDRESS is present, control is passed directly to that location in the slave
memory. If ADDRESS is not present, either control is passed to the start ad-
dress of a previously LOADed module or execution continues from the last point
stopped in the Debugger.

DOS ERROR RESPONSES

37 - INVALID GO ADDRESS

LOAD FILENAME

This command loads the binary load module FILENAME into slave memory. This
load module must have been created by the MODULE command.

FILENAME will be loaded into the slave memory starting at the location specified
at the time the load module was created. Control is not passed to the load
module as in the XEQ =and.

DOS ERROR RESPONSES

6 - DEVICE READ ERROR
14 - INVALID WIT DEVICE
48 - LOAD FILE NOT FOUND
49 - LOAD FILE ASSIGN FAILURE
50 - FILE NOT A LOAD MODULE
51 - INVALID LOAD REQUEST

8-15

XEQ FILENAME

This command causes the binary load module FILENAME which was created using the
MODULE command to be loaded into slave memory and executed. This command is the
equivalent of executing LOAD FILENAME followed by the GO command.

SOOS ERROR RESPONSES

6 - DEVICE READ ERROR
14 - INVALID INPUT DEVICE
48 - LOAD FILE NOT FOUND
49 - LOAD FILE ASSIGN FAILURE
50 - FILE NOT A LOAD MODULE
51 - INVALID LOAD REQUEST

DUMP Al (A2) (DEVICE)

This command causes the contents of slave memory to be displayed on DEVICE, be-
ginning with address Al. The display consists of two hexadecimal characters
representing the contents of each byte displayed. If A2 is not specified, then
only 16 bytes of data are displayed. If DEVICE is not specified, the data will
be displayed on the console.

Addresses Al and A2 (if specified) are adjusted in the following manner. The
low order hexadecimal character is replaced with 0. For example, 3F3E is al -
tered to 3F30. Then, A2 is replaced by A2 + hexadecimal 10. This has the
effect of lowering Al to the next lowest multiple of 1016 and raising A2 to the
next highest multiple of 1016 . The contents of memory from Al to A2 is then
displayed. For example, if DUMP 3F3E-4001 was entered, the DUMP program would
display the data from 3F30 to 4010. Sixteen bytes are displayed on each line,
preceded by the address of the first byte on that line.

DMP ERROR RESPONSES

17 - OUTPUT DEVICE ASSIGN FAILURE
31 - PARAMETER REQUIRED
35 - INVALID STARTING ADDRESS (A1)
36 - INVALID ENDING ADDRESS (A2)

13(AM ADDRESS

This command causes the contents of the slave memory location ADDRESS to be dis-
played on the console. The user then has several options. The user may a) dis-
play the next sequential byte; b) display the current location and its contents;
c) replace the current memory byte with entered data and display the next se-
quential memory byte; d) terminate the EXAM command.

After the initial memory byte is displayed, the user can press any of these keys
to initiate the corresponding function:

SPACE 	Display the next sequential byte.
LINEFEED or DELETE 	Go to the next line and then display the current

	

(RUBOUT) 	location and its associated data byte.
HEX DATA PAIR

	

	Replace the current memory location with the hex-
data pair. Then display the next sequential byte.

RETURN 	Terminate the EXAM command.

The display of memory bytes will automatically go to the next line and display
the location and its data byte whenever the location to be displayed is a mul-
tiple of 10 	.

The ESC Key has a different interpretation when the EXAM command is being used.
Consult Section 4.2 for details.

For example, if locations 3000-3003 contained 00, 01, 02, 03 respectively, the
EXAM command could be used as follows (user interaction underlined).

>EXAM 3000
3000=00 01 02 030

When the space bar was entered, the next sequential byte was displayed. When
return was entered, the command was terminated. To increment each location,
this sequence could be used:

>EXAM 3000
3000=00-01 01-02 02-23 03-04 	

The '-' is provided by the EXAM command when the user enters a hex character.

EXM ERROR RESPONSES

31 - PARAMETER REQUIRED
35 - INVALID START ADDRESS
39 - INVALID HEK CHARACTER

8-17

PATCH ADDRESS HEX -STRING

This command allows the user to alter slave memory. ADDRESS is a hexadecimal
address constant. HEX -STRING is a string of hexadecimal digits from 1 to 58
digits in length.

The contents of slave memory starting at ADDRESS is replaced with the value HEX-
STRING. This replacement is performed on a byte-to-byte basis. For example,
PATCH 3000 3F001E would replace the data at location 3000 in slave memory with
3F, the data at location 3001 with 00, and the data at location 3002 with 1E.

PAT ERROR RESPONSES

31 - PARAMETER REQUIRED
34 - INVALID ADDRESS
39 - INVALID HEX CHARAUTER

STATUS

This command gives the status of the program being executed by the slave CPU.

The name of the program running under the slave CPU, the state of the program,
and the channel assignments of the program are output to the system console.
The status of any COMMAND FILE currently in progress is displayed. The
table below lists the possible values for STATUS information.

SLAVE (CHIP NAME) IS ACTIVE
IDLE

(SLAVE JOB NAME) IS LOADED
EXECUTING
IN I/O WAIT
SUSPENDED
UNDER DEBUG CONTROL

CHAN (N) ASSIGNED TO (DEVICE) (OPEN)
CHAN (N) ASSIGNED TO (DEVICE) (READ)
CHAN (N) ASSIGNED TO (DEVICE) (WRITE)
CHAN (N) ASSIGNED TO (DEVICE) (EOF)

CCMMAND FILE (NAME) IS IN PROGRESS
SUSPENDED

8-18

SLAVE CHIPNAME (MODE) (MEM) (DEV ADDR)

This command designates the active slave CPU and sets its mode of operation.
CHIPNAME is the name of the target slave CPU and is given as a string of up to
eight characters. Currently, 2650 is the only CHIPNAME implemented. MODE
designates the mode in which the slave CPU will operate. The default value of
mode is 0. MEM specifies the memory available to the slave CPU. The default
value of MEM is 1. DEV ADDR gives the address of the slave CPU board. The
default value of DEV ADDR is determined by CHIPNAME. If CHIPNAME is 2650, the
default for DEV ADDR is EO.

The possible values for MODE are:

0 - TWIN Mode. Uses TWIN slave memory and I/O.
1 - Partial TWICE mode. Uses TWIN slave memory, user prototype I/O and user

clock.
2 - Full TWICE mode. Uses user prototype memory, I/O, and clock.

In mode 2, the TRACE JUMP option is not available. (See TRACE command descrip-
tion on Page 8-29.)

The possible values for MEM are:

1 - slave memory bound 0-16K.
5 - slave memory bound 0-32K.

The possible values for DEV ADDR are:

EO - 2650.

SLV ERROR RESPONSES

31 - PARAMETER REQUIRED
32 - TOO MANY PARAMETERS
53 - INVALID SLAVE CPU
54 - INVALID MODE
55 - INVALID MEM
56 - INVALID DEVICE ADDRESS

BKPT ADDRESS (WRITE) (READ)

This command causes a program breakpoint to be set for the slave. If WRITE is
specified the break occurs only when there is an attempt to write to the speci-
fied address. If READ is specified, the break occurs only When there is an
attempt to read the specified address. If neither WRITE nor READ are specified
the break occurs whenever there is an attempt to read or write to the specified
address.

When the breakpoint address is accessed during program execution, a trace line
is displayed on the debug output device, and a breakpoint message is displayed
at the console.

Up to two breakpoints may be active in the system.

ERROR RESPONSES

TOO MANY BREAKPOINTS - TWo breakpoints are already active.

DEB ERROR RESPONSES

30 - INVALID PARAMETER
34 - INVALID ADDRESS

CLBP (ADDRESS)

This command clears a breakpoint. If ADDRESS is specified, the breakpoint at
the specified address is cleared. If ADDRESS is not specified, all breakpoints
are cleared.

ERROR RESPONSES

BREAK POINT NOT ACTIVE - The specified address was not an active break point
address.

*DE30 ERROR RESPONSES

34 - INVALID ADDRESS

RESET

This command causes a RESET pulse to be applied to the slave processor.

SET Rm A1(...Ai)
or
SET PSU Al(A2)
or
SET PSL A

This command causes the specified slave CPU registers to be set to the hexadec-
imal constants A. The limits for A are 0 to FF.

SET Rm A... causes the slave CPU general registers beginring with Rm to be set
to the values specified. Rm is set to Al, Rm+1 is set to A2, and so forth.
Only the registers for which values are specified are changed. SET PSU Al
causes the PSU of the slave CPU to be set to Al. Set PSU Al A2 causes the PSU
to be set to Al and the PSL to be set to A2 . SET PSL A causes the PSL of the
slave CPU to be set to the value A. The registers of the slave CPU are
designated by the following notation:

RO - Register 0
R1 - Bank 0 Register 1
R2 - Bank 0 Register 2
R3 - Bank 0 Register 3
Rij - Bank 1 Register 1
R5 - Bank 1 Register 2
R6 - Bank 1 Register 3
PSU - Program status upper
PSL - Program status lower

For example, SET R2 4F 23 51 would set Register 2 in Bank 0 to the value 4F,
Register 3 in Bank 0 to the value 23, and Register 1 of Bank 1 to the value
51.

Note that it is also possible to set the PSU and PSL in this manner. SET R6 FF
AO BO will set register 3 of bank 1 to FF, the PSU to AO, and the PSL to BO. It
is not legal, however, to refer to the PSU as R7 or the PSL as R8.

DEB ERROR RESPONSES

30 - INVALID PARAMETER
43 - INVALID DATA PARAMETER

DSTAT

This command causes the Debug status to be displayed on the Debug output device.
The slave CPU's last instruction address, the active breakpoints, and the
slave CPU's register contents are displayed. The format of the DSTAT display
is as follows:

1 	2 	3 	2 	3 	4 	5 	6 	7 8
P=OBAO 	BP=0900 	WR 	0A00 	WR 	R=FF 	00 00 02 04 05 06 00 08

1 gives the location of the last instruction executed by the slave CPU.
2 gives the address of the active breakpoints.
3 informs the user what conditions are necessary for the break to occur. If a

W is present, a break will occur every time a write is attempted to the
associated location. If an R is present, a break will occur every time a
read is attempted to the associated location.

4 gives the contents of RO
5 gives the contents of Registers 1, 2 and 3 in Bank 0.
6 gives the contents of Registers 1, 2 and 3 in Bank 1.
7 gives the contents of the Program Status Word Upper.
8 gives the contents of the Program Status Word Lower.

TRACE 0FF
or
TRACE ALL (SIEF) (Al A2)
or
TRACE JMP (STEP) (Al A2)

This comand determines the trace mode for the Debugger. If TRACE 0FF is speci-
fied, the TRACÉ mode is disabled, which means that no instruction traces will
be displayed on the Debug device. If TRACE ALL is specified, all the instruc-
tions executed by the slave CPU will have their trace information displayed on
the Debug display device. If TRACE JMP is specified, all branch instructions
will have their trace information displayed on the Debug display device. If
STEP is specified with the TRACE ALL or TRACE JMP command, control will be
returned to the console after every instruction trace is displayed. If the
STEP option is used, the GO command must be used to continue the user program
after every STEP trace. If Al and A2 are specified, the TRACE function will be
performed as specified, but only the instructions executed between Al and A2
will have their trace irr=ation displayed. Al and A2 are hexadecimal address
constants in the range 0 - FrFe. A2 must be equal to or larger than Al. The
default value for Al is 0. The default value for A2 is FFFF. The format of
the TRACE display is as follows:

LOC INST MNEMON XR U OPAD IADD IV EADD RO R1 R2 R3 R4 R5 R6 PU PL

gives the location of the last instruction executed.
gives the value of the instruction executed.
gives the instruction mnemonic (see Table 8-2) including the register
or condition code value, if required.
is the index register, if any, for the instruction.
If U is a +, auto increment indexing is used for absolute addressing
instructions, OR, a forward address is calculated for a relative
addressing instruction.
If U is a -, auto decrement indexing is used for absolute addressing
instructions, OR, a backward address is calculated for a relative
addressing instructions.
gives the value or address of the operand.
is the indirect address value.
is the index register value.
gives the effective address that has been calculated for this

instruction.

where:

LOC
INST
MNEMON

XR
U

OPAD
IADD
IV
EADD

RO
R1
R2
R3
R4
R5
R6
PU
PL

gives
gives
gives
gives
gives
gives
gives
gives
gives

the value
the value
the value
the value
the value
the value
the value
the value
the value

of Register 0.
of Register 1 in Bank 0.
of Register 2 in Bank 0.
of Register 3 in Bank 0.
of Register 1 in Bank 1.
of Register 2 in Bank 1.
of Register 3 in Bank 1.
of the Program Status Word Upper.
of the Program Status Word Lower.

All values displayed are in hex.

The TRACE JUMP form is not active in slave mode 2. In slave mode 2,
information displayed in the TRACE display is LOC and the register and
status word values.

DEB ERROR RESPONSES

31 - PARAMETER REQUIRED
35 - INVALID START ADDRESS
36 - INVALID END ADDRESS
44 - INVALID TRACE MODE PARAMETER

the only
program

TABLE 8-2
TRACE TABLE MNEMONICS

TRACE 	INSTRUCTION 	TRACE 	INSTRUCTION
MNEMONIC 	MNEMONIC 	MNEMONIC 	MNEMONIC

LDZ 	LODZ 	RRR 	RRR
LDI 	LODI 	RRL 	RRL
LDR 	LODR
LDA 	LODA 	BCT* 	BCTR

BCTA
STZ 	STRZ
STR 	STRR 	BCF* 	BCFR
STA 	STRA 	 BCFA

ADZ 	ADDZ 	BRN* 	BRNR
ADI 	ADDI 	 BRNA
ADR 	ADDR
ADA 	ADDA 	BIR* 	BIRR

BIRA

SBZ 	SUBZ
SBI 	SUBI 	BDR* 	BDRR
SBR 	SUBR 	 BDRA
SBA 	SUBA

ZBR 	ZBRR
DAR 	DAR

BXA 	BXA
ANZ 	ANDZ
ANI 	ANDI 	BST* 	BSTR
ANR 	ANDR 	 BSTA
ANA 	ANDA

BSF* 	BSFR
IOZ 	IORZ 	 BSFA
IOI 	IORI
IOR 	IORR 	BSN* 	BSNR
IOA 	IORA 	 BSNA

EOZ 	EORZ 	ZSR 	ZBSR
EOI 	EORI
EOR 	EORR 	BSX 	BSXA
EOA 	FORA

RTE 	BETE
CMZ 	COMZ 	RTC 	RETC
CMI 	COMI
CMR 	COMR 	WRD 	WRTD
CMA 	COMA 	RDD 	REDD

8-24

TRACE 	INSTRUCTION 	TRACE 	INSTRUCTION
MNEMONIC 	MNEMONIC 	MNEMONIC 	MEMONIC

HLT 	HALT 	WRC 	WRTC
RDC 	REDC

NOP 	NOP 	WTE 	WRTE
RDE 	REDE
TMI 	TMI

LSU 	LPSU
LSL 	LPSL

SSU 	SPSU
SSL 	SPSL

CSU 	CPSU
CSL 	CPSL

PSU 	PPSU
PSL 	PPSL

TSU 	TPSU
TSL 	TPSL

* Relative Instructions are Recognized by a + or - Direction Indicator in the
Trace Line "U" Field.

8.5 	TWICE DEBUG CABLE

The TWICE debug cable is used to connect the slave CPU board to the user's
system. This will allow the TWIN's slave CPU to operate the user system.

The TWICE cable contains an in-line printed circuit assembly which provides
isolation for the TWIN system from the user system. The cable is approximately
10 feet long and has two connectors on one end (this end is attached to the
slave CPU board) and a 40-pin plug on the other end (which is inserted into the
user system). Refer to Section 3.1.5 for detailed installation instructions.

The cable may remain installed even though not in use as long as care is taken
not to short out the 40-pin plug. A 1 amp fase on the slave CPU board protects
the +5V power to the TWICE cable.

The SLAVE command controls what signals are passed over the TWICE cable to the
user's prototype system.

8-26

APPENDIX A

SDOS COMMAND SUMMARY

The short form required to invoke the command is underlined.

COMMAND 	 PAGE
ABORT NAME 	 4-12
or
ABORT *
or
ABORT /

ASSIGN CH DEVICE (... CH DEVICE) 	 4-13

ASM SOURCEFILE (LISTFILE) (OBJECTFILE) (WIDE) (NOERR) 	6-2

BKPT ADDRESS (WRITE) (READ) 	 8-20

CLBP (ADDRESS) 	 8-20

CLOSE CH (... CH) 	 4-12

CONT NAME 	 4-11
or
CONT *
or
CONT /

COPY INPUT (...INPUT) OUTPUT 	 4-22

CPROM (A1) (N) (A2) (A3) (C) 	 7-3

CSMS (ADDRESS) (DEVICE) 	 4-26

DEBUG (ADDRESS) (DEVICE) 	 8-4

DELETE FILENAME/D (,...,FILENAME/D) 	 4-15

DEVICE DEVICE U 	 4-21
or
DEVICE DEVICE D

DSTAT 	 8-22

A-1

n
C

0

0

0

0
0

DUMP Al (A2) (DEVICE) 	 8-16

DUP D1 D2 (IDENT) 	 4-20

EDIT (INFILENAME) (OUTFILENAME) 	 5-2

EXAM ADDRESS 	 8-17

FORMAT D (IDENT) 	 4-17

GO (ADDRESS) 	 8-15

KILL ON 	 4-31
or
KILL OFF

LDIR (D) (.) (/) (DEVICE) 	 4-21

LOAD FILENAME 	 8-15

MODULE FILENAME Al, A2, A3 (IDENT) 	 4-24

PATCH ADDRESS HEX-STRING 	 8-18

PRINT FILENAME (DEVICE) (L1 L2) 	 4-23
or
PRINTL FILENAME (DEVICE) (L1 L2)

RENAME OLDFILE/D NEWFILE/D 	 4-19
or
RENAME D IDENT

RESET 	 8-20

RHEX (/BIAS) (DEVICE) 	 4-25

RPROM (A1) (N) (A2) (A3) (C) 	 7-2

SEARCH ON (N) 	 4-14
or
SEARCH OFF

SET Rm A1(...Ai)
or
SET PSU Al(A2)
or
SET PSL A

8-21

A-2

SLAVE CHIPNAME (MODE)(MEM)(DEV ADDR) 	 8-19

STATUS 	 8-18

SUSPEND (NAME) 	 1-11

or
SUSPEND *
or
SUSPEND /

SYSTEM D 	 4-15

TRACE OFF 	 8-22

or
TRACE ALL (STEP) (Al A2)
or
TRACE JMP (STEP) (Al A2)

TYPE ON 	 4-31

or
TYPE OFF

VERIFY D 	 4-18

WHEX Al A2 ... (,,Al A2) (A3) (DEVICE) 	 4-28

WPROM (A1) (N) (A2) (A3) (C) 	 7-2

WSMS (ADDRESS) (DEVICE) 	 4-26

XEQ FILENAME 	 8-16

* COMMENT 	 4-32

A-3

APPENDIX B

TEXT EDITOR COMMAND SUMMARY

The short form required to invoke a command is underlined.

COMMAND 	 PAGE

AGAIN 	 5-26

BEGIN 	 5-26

BRIEF 	 5-31

COPY N INFILE (OUTFILE) 	 5-25

DOWN n 	 5-26

END 	 5-26

FILE 	 5-28

FIND $string$ 	 5-21

GET N (FILENAME) 	 5-23

INPUT 	 5-16

INSERT string 	 5-16

KILL N 	 5-18

LIST N 	 5-25

MACRO m=COMMANDLINE 	 5-32

MACRO m 	 5-32

N 	 5-26

PUT N (FILENAME) 	 5-24

PUTK N (FILENAME) 	 5-24

B-1

QUIT

REPLACE string

SDOS

SUBSTITUTE $stringl $string2 $

TAB CHAR

TABS Cl C2 C3 ...

TYPE N

UP n

m<commands>

APPENDIX C

ABSOLUTE OBJECT FORMAT

Absolute object code is fonuatted into blocks. Within a block, only hexadecimal
characters are permitted, with the exception of the colon which indicates the
start of a block.

Each block contains the following elements:

1) A start of block character. This is always a colon (:).

2) An address field. This is a four hex character field that indicates where
the data is to be stored.

3) A count field. This is a two hex-character field in the range 00 to 1E.
This indicates the nunber of actual data bytes in the block, which is half
the number of hex characters in the data field. A block length of zero
indicates an Ehd-of-File (EOF) block. The address field of an EOF block
contains the start address of the loaded program.

4) A Block Check Character (BCC) for the address and count fields. This is
a two hex-character field. The BCC is 8 bits formed from the actual bytes,
not the ASCII characters (e.g., if the count field was 1E, the two byte
ASCII value 31 45 would not be used, the value 1E would be used). The
bytes, (in this case the two bytes from the address field and the byte
from the count field) are in turn exclusive-ORed to the BCC byte and then
the BCC byte is rotated left one bit.

This field prevents storing data at an invalid memory address.

5) The data field. This field contains two times the nunber of characters
specified in the count field. TWo bytes in this field are composed into
one byte of data to be stored into memory. (e.g., if the first two
characters on the tape veere '1E', [ASCII values 31 and 45] 1E is stored
into memory.)

6) A Block Check Character for the data field. This character is formed in
the same way as the BCC for the address and count fields, only the data
used to compute the BCC is the data in the data field.

C-1

Each block is independent. For example, paper tape can be positioned prior to
any block and a load started. The loading of absolute object code will be
halted by:

A Block Control Character error on the address and count fields
A Block Control Character error on the data field
An incorrect block length
A non-hex character within the block.

Inter-block characters must be non-printing ASCII control characters. For ex-
ample, a CR (Carriage Return)/LF (Line Feed) combination is used within the
inter-block gap to reset the TTY or terminal after each block.

05000A3C045513024FFF01F05040030

// 	C) 	lJ
2 — Start of block character (colon)
3 — Starting address for block (H'0500')
4 — Number of bytes in block (1-1'0A' = 10)
5 — BCC byte for fields 3 and 4 (1-1'30
6 — Data, two characters per byte
7 — BCC byte for field 6 (H'30')

APPENDIX D

SMS TAPE FORMAT

An SMS tape consists of a block of data, preceded by a TAPE ON character
(CTRL-R or hex '12') and followed by a TAPE 0FF character (CTRL-T hex '14').
When the TAPE ON character is read,the address counter is set to zero. This
means that the next data byte will be stored at location 0. When the TAPE 0FF
character is read, the tape has been read and no more data is stored.

The data in between is represented as follows:

1) Each data word is represented by one or two hexadecimal characters.

2) Each data word is followed by an apostrophe (hex '27'). When the apostrophe
is read, the data word composed from the previous hexadecimal characters is
stored at the location pointed to by the address counter. The address
counter is then incremented.

All characters are punched in the standard 8-channel ASCII teletype code.
Parity is not checked.

EXAMPLE OF SMS FORMAT

01 1FA'FA'00'10'

dip 	 Q-0

1 THE TAPE ON CHARACTER. RESETS LOCATION COUNTER TO 0.
2 AN INDIVIDUAL DATA BYTE, 01'. 01 IS THE DATA TO STORE.

' INDICATES END OF THE DATA BYTE.
3 THE COMPLETE DATA FIFLD FOR THIS TAPE.
4 THE TAPE 0FF CHARACTER. INDICATES END OF DATA.

0

e

0

0

0
0

APPENDIX E

SYSTEM READINESS TEST

READY is a command file which provides a quick check
of the TWIN system in the SDOS environment by exercising
each device and the majority of system comands.

LPT1
READY D CONO

D identifies the disk drive of the diskette containing
READY. This diskette must be writable (TAB in place
over slot) and have space for one file which will be
written and then deleted. The printed output must be
directed either to CONO (basic system) or to LPT1 (super
system). Each command executed is displayed on the
console. At the end of its execution, READY invokes
the editor, which prints:

EDITOR VERSION 2.0
*

At this point enter the string: QUIT. The 'End of Ready
Test' message notifies the user that the test has completed.

Two types of error messages may occur:

1 	Memory type errors in the form:

ERROR ADDRESS XXXX
DATA WAS = XX
DATA S/B = XX

2. Standard SDOS Error messages.

El

0

C)

0

TuR,2 	P1_.12EP ON

:4- 	;11:11URY TEST

TYPE OFF
:":PF OM 0 2 n 1FF
Cr --111 0 2c 1FF

0 1 41 F
c:Pr-:nH 0 1 n FF
DEE:HG
At::ORT DEEUG
rHF :--FADY/$1
nn 00
TYPE eN

cOPY ,,E1 ;Dy/$1 ***HELP/$1
***HELpf$1 $2

*-*HELPY1f1
LDIR . / $1 -..t2

D':-USJJG
7:LPT 0 W
;TJKPT 	R
Tv .STAT
eLF:P n
CLBP 1000
;E :FAT DFSHG

LAVF 2550 1 1
7.LAVE 2550 2 1
SLAVE 21, 50 0 1

* 	TYPE 	HHEN EDIT A= I: FOR INPUT
EDIT
:f:

) END OF READY TEST

F;E:ORT *
:17Innn~iFni717n18
:..71..7.4111B7r17i4E.psnrioi:.:::rin4AlAt712n1 ,.7innni711701471c7-11711~20:117innf15B3
::-1;,.5C-A.F1474F4E4F0Dn2n1 nOnn1.7:01Arrinincinnn171..g.DD4F7(7-iFFn4FFCC018440
:nn7'.7;e1F~Cen122C2CFnl'27CF127n~7EDn1:.=-nr:nWic,IDE,Inna:;t2n4:7*=.1n9A5777
:nn• 71Df7.4CEn18752!=.22nEg.12RenninECCC01s7D4Fg.nCn12480n1E4n45180288
:fwie41FEFD4F-z:CCn124nCg.12nCCn1:::Ani7.n1n7-7.9FCFnlsCDE1:::!=e2n1s9r~lEE01271:718
:1.-k;ID21D71~2s9Fn--nicEninDE12F.ECn1::::ARCOlnE:29n1F,97- niFF012792g.9E.9
:nri11C271~22:C144FOKsPISPE:47.:IF4 7Ari1~4P174aIF5.171F57Fill 17177
:C:-.1 711C1CCDn1~PWIF2CUt17frjileD171177L:ii:47112C01~-171L-IF2C~FiCr)nlE.OÉ:S
:17?-1271CACOU11253F0;71F2CCrilf-7,2CD1711 71CniFiF2F7CC17117DCDnI7FD4FF=D4F4D7
‘,1141B.;7'.0D01891.74D454D4Fs25204c;IsA4s2n45152021717L714EnD4552524FAB

—11,15E1E4D522041444452455-15320W55580D444154412057415585820532F42F6
n17C1CCF7fWis2171D1InFF.sRPFF11171r11A-IpIns-1~~n-:,n7A.:~1227ng.2

)e-1704612.7.42.2382:31:201001
:117717..1;:b"10-1‘1171 ti

E2

0
o
0

0

0

0

APPENDIX F

SYSTEM UTILITY CC1MAND FILES

Signetics supplies a command file, COPYSYS, which copies the operating system
from one disk to another. The general foren of this command is

COPYSYS D1 D2

where D1 is the drive to copy from and D2 is the drive to copy to. For example,
to copy the operating system from drive 0 to drive 1, enter this command:

COPYSYS 0 1

When the command is invoked, the following files are copied from D1 to D2:

1. The resident SDOS binary load file
2. All SDOS overlays, including the Assembler and the Text Editor. They

are all binary load files.
3. The System Readiness Test
4. The COPYSYS command file.

For the most rapid system response to comands to occur, the operating system
should be copied onto a disk before any other files are stored on it. This will
allocate the tracks closest to the outside to the system files, and minimize
disk lead movement when the overlays for the commands are brought into the
overlay areas.

0

0

O

APPENDIX G

STANDARD SYMBOLS

EQUATES is a source file which defines all the standard Assembler
symbols. If a prorammer wishes to use these symbols, he appends
this file to the beginning of his source file, e.g.:

EDIT FILENAME
EDITOR VERSION 2.0
*GET 100 EQUATES
*FILE

0

0

0

)

- THE. FILE ;. 	EN:IEJ TO TKE

	

4- 	 FF:ry,T OF

	

Ei."9 	0 	F E I STEF 121

	

PI 	Eg.i 	1 	F.ESTER
F2 	Eili 	2 	Pr7n 57'7P 2

	

F:I• 	FA! 	 F.ECISTER 3
c:;:;'.1'.IT";

	

P 	EPU 	1 	FOS I VE SULT

	

Ei 	 :s f:ESULT

	

N 	 2 	!.11JE F:ESULT

	

LT 	ECili 	2 	LES. Ta:24

	

EOL! 	 EC.:.1.21 TO

	

GT 	EOU 	1 	f.:;.; STER THr'iN
CML

P•::,;.•!

	

CC 	EOU 	 - eet 	coDE5

	

ErAl 	H2' 	11,7.:EICIT CRRRY

	

R5 	E.XI 	14:10" 	RUS I E R

	

WC 	EDU 	'" 	 TPáliT CFY
CAF 	E t.75.1 	H C4'
CON 	ECU 	H i32' 	1L3JC Cr-RRIT12,1--,ET IC C0'..E
C Eal H011 (.-.F.1:'41(1:0F2CM

pcm

	

SENS EO) 	H 	5EE EaT
FLfiG 	ECU 	WilEe 	FL.F415 E;IT

	

II 	E@LI 	1-1'201 	:tyTE;;R;ii:1 ItIBIT

	

EP 	UA' 	H €7' 	5:71:.L Fi: ER
:4, END OF

F'JE

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160

